1983 - 1984

Annual Report

to the

Area II Potato Administrative Committee

March 14, 1984

Prepared by Milton Workman with cooperation and assistance of David Holm and Mike Thornton.

Table of Contents

		Page
	List of tables	i
	List of figures	ii
	Summary	<u>iii</u>
I.	Observations of clones harvested in 1982 during the 1982-83 storage season.	
	 Percentage dry matter, ascorbic acid content, and mean redox potential. 	1
	b) Soft rot susceptibility evaluations.	2
	c) Blackspot susceptibility evaluations.	4
	d) Mineral content of clones evaluated during 1982-83.	6
	e) Tuber condition of clones harvested fall, 1982 on April 8, 1983 after storage at 4°C (39°F).	9
	f) Weight loss of cut seed and sprout growth.	9
II.	Observations of clones harvested in 1983.	
	a) Percentage dry matter and ascorbic acid content.	13
	b) Soft rot susceptibility observations.	15
	c) Blackspot susceptibility observations.	15
	d) Percent tuber weight loss and sprouting.	19
	e) Mineral content of clones evaluated during 1983-84.	22
III.	Influence of storage and time of bruising on blackspot susceptibility of Russet Burbank.	25
IV.	Additional studies underway.	28

List of Tables

		Page
1	Percentage dry matter, ascorbic acid content, and mean redox of 9 clones measured in the fall, 1982 and spring, 1983.	22
2.	Soft rot susceptibility indices of 9 clones evaluated in air and 8% CO ₂ in the fall, 1982 and spring, 1983.	3
3.	Blackspot susceptibility of 9 clones (1982 crop) evaluated in the spring, 1983.	5
4.	Comparison of blackspot susceptibility parameters (1982 crop) in the fall, 1982 and spring, 1983.	
5.	Potassium, phosphorus, calcium, magnesium, iron, copper and zinc contents of 9 clones evaluated in the 1982-83 storage season.	8
6.	Tuber condition of clones harvested fall, 1982 on April 8, 1983 after storage at 4°C (39°F).	10
7.	Dry matter percentage and ascorbic acid content of 8 clones measured in the fall of 1983 (to be evaluated again in the spring of 1984).	14
8.	Soft rot susceptibility indices of 8 clones evaluated in air and 8% CO ₂ in the fall of 1983 (to be evaluated again in the spring of 1984).	16
9.	Blackspot susceptibility of 8 clones evaluated in the fall of 1983 (to be evaluated again in the spring of 1984).	17
10.	Percentage tuber weight loss and sprouting of 8 clones harvested fall, 1983.	20
11.	Potassium, phosphorus, calcium, magnesium, iron, copper, and zinc content of 8 clones evaluated in 1983-84 storage season.	24
12.	Influence of storage and time of bruising on blackspot susceptibility of Russet Burbank.	26

List of Figures

		Page
1.	Weight loss of cut seed at 65° - 70° F (18° - 21° C) and 60 to 70% relative humidity (1982-83).	
2.	Sprout growth on cut seed after 375 hours at 65° - 70° F (18°-21°C) and 60 to 70% relative humidity (1982-83).	12
3.	Accumulated weight loss of whole tubers when stored at $10^{\rm OC}$ (50°F) from October 14, 1983 to January 18, 1984.	21
4.	Accumulated weight loss of whole tubers when stored at 4°C (39°F) from October 14, 1983 to January 18, 1984.	22

SUMMARY

Seven promising seedling clones were compared to Russet Burbank and Centennial (1982 crop) during the 1982-83 storage season. Measurements of dry matter content, ascorbic acid, redox potential, soft rot susceptibility and blackspot susceptibility were made shortly after harvest and repeated after storage at 4° C (39 $^{\circ}$ F). Tuber mineral content was determined and weight loss and sprouting behavior of cut seed held at 18° - 21° C (65 $^{\circ}$ - 70° F) was determined in the spring.

Significant differences were found between clones in all measurements. TC2-1 was perhaps the most interesting and promising of the seedlings. It possessed high dry matter, high ascorbic acid, and low blackspot and shatter bruise susceptibility. Soft rot susceptibility was similar to Russet Burbank. Tuber condition was excellent out of 4°C (39°F) storage but 1/16" to 1/8" sprouts had developed. Russet Burbank did not show any sprout activity. Cut seed of TC2-1 lost weight significantly more rapidly than Russet Burbank but seed pieces remained in good condition and sprouted vigorously.

Of interest and perhaps concern was the apparent change in blackspot susceptibility and soft rot susceptibility of Centennial. A few years ago this cultivar, in our tests, was blackspot resistant and quite resistant to soft rot. The change in soft rot susceptibility may have resulted from a change in the strain of Erwinia atroseptica used for soft rot assay.

Six seedlings clones (1983 crop) were compared to Russet Burbank and Centennial in respect to all of the measurements mentioned above except redox potential. Three of the seedlings were common to both years.

TC2-1 showed somewhat more blackspot susceptibility in the fall of 1983 than in the fall of 1982. However, the color was light and shatter bruise continued low.

A74212-1, AD74135-1, and A72685-1 were ranked 1, 2, and 3 in respect to yield and tuber type in 1982 and A72685-1 was number 2 in the 1983 Western Regional trials.

A74212-1 was at least equal and perhaps superior to Russet Burbank in most comparisons. Tuber weight loss at 10°C (50°F) was slightly faster than Russet Burbank. AD74135-1 showed more blackspot susceptibility and much more shatter bruise susceptibility. Tuber weight loss at 10°C was slightly faster. A72685-2 showed more shatter than Russet Burbank but was similar in other respects. All three clones were significantly higher than Russet Burbank in ascorbic acid content.

A small experiment was conducted to determine how Russet Burbank blackspot is influenced by time of bruising and storage. Tubers bruised shortly after harvest and incubated immediately at 28°C (82°F) and tubers bruised and placed at 4°C and examined in April 1983 immediately upon removal from storage developed the same amount of blackspot. If the potatoes were warmed 36 hours at 28°C after removal from storage, to simulate holding on the shipping room floor, blackspot color darkened and the volume of the spot increased. If the potatoes were bruised only after storage at 4°C blackspot color was darker and volume was greater than in the above 3 cases.

- I. OBSERVATIONS OF CLONES HARVESTED IN 1982 DURING THE 1982-83 STORAGE SEASON.
 - A. Percentage Dry Matter, Ascorbic Acid Content and Mean Redox Potential (table 1).

Dry matter content differed significantly between the nine clones and ranged from 20.6% to 25.3% in the fall and from 23.2% to 27.4% in the spring following storage at 4° C. The increase in % dry matter during storage resulted from moisture loss.

Ascorbic acid likewise differed significantly, ranging from $\underline{12}$ mg/100 grams to $\underline{23.1}$ mg in the fall and from $\underline{8.0}$ mg to $\underline{10.7}$ mg after storage.

Clones also differed significantly in redox potential. On the average redox potential increased with storage at 4° C. In part this was most likely due to the decrease in ascorbic acid resulting in a more oxidized status.

The most interesting clone was TC2-1 which had the highest dry matter content, nearly 3% higher than Russet Burbank, and a very high ascorbic acid content, nearly double that of Russet Burbank when measured shortly after harvest.

B. Soft Rot Susceptibility Evaluations (table 2).

Tuber discs inoculated with Erwinia atroseptica (J-10 strain) and incubated in air and 8% CO $_2$ were used to assay for soft rot susceptibility. On a scale of 0-200, the mean soft rot index ranged from 122 to 183. Relative to Russet Burbank only Centennial and WC285-18 were significantly less susceptible. The remaining clones

Table 1 - Percentage dry matter, ascorbic acid content, and mean redox of 9 clones measured in the fall, 1982 and spring, 1983.

] %	% D.M.	Asc. acid Mg/100 g	acid 00 g		Ā	Mean redox		
Cultivar	F '82	\$ 183	F '82	\$ 183	F '82	S 183	Stem	Mid	Bud
AC71861-4	19.8	20.8	19.6	6.1	100	93		98	86
AC77652-1	21.2	23.6	19.0	6.3	89	92	6	87	93
AC77149-2	20.6	23.2	16.2	8.9	108	94	110		
AC77514-1	22.9	26.8	18.7	3.2	29	66	87		
Centennial	21.4	23.4	18.4	7.4	85	107	6		
R. Burbank	22.3	24.4	12.0	8.0	91	93	95		
WC285-18	21.1	24.1	16.2	9.9	95	113	114		
AC77513-1	22.1	23.8	21.0	5.5	98	157	122		
TC2-1	25.3	27.4	23.1	10.7	89	141	113	66	
Mean	21.8	27.2	20.5	9.7	88	110	104		
Analyses of Variance	riance								

	% DI	ry matter and as	corbic aci	Q				
	ΡV	alues	Requi	red F	Redox	×	Redu	red F
Factor	% D.M. Asc. a	Asc. acid	0.05	c. acid 0.05 0.01	Fa	F value	0.05	0.05 0.01
Clone	39	11	2.01	2.65		16	1, 96	2.55
Season	192	872	3.92	6.84		155	3.86	6.70
C x S	2	6	2.01	2.65	Location	16	3.02	4.66
			£			34	1,96	2.55

 $S \times L$

2.04

1.67

Table 2 - Soft rot susceptibility indices a of 9 clones evaluated in air and $8\%~\mathrm{CO}_2$ in the fall, 1982 and spring, 1983.

	Fá	all	Spr	ring			Means		
Cultivar	<u>Air</u>	8% CO ₂	Air	8% CO ₂	<u>Fall</u>	Spring	<u>Air</u>	8% CO ₂	Mean
AC71861-4	174	186	152	196	180	174	163	191	177
AC77562-1	196	189	189	157	193	173	192	173	183
AC77149-2	186	166	164	167	176	166	175	166	171
AC77514-1	172	185	90	194	178	142	131	189	160
Centennial	161	147	94	136	154	115	128	142	135
R. Burbank	153	187	146	186	170	166	149	186	168
WC285-18	157	183	59	90	170	74	108	136	122
AC77513-1	190	200	37	165	195	101	114	183	148
TC2-1	154	173	113	178	164	145	133	176	155
Mean	172	179	116	163	176	140	144	171	158
								LSD _{.05}	24

Analyses of Variance

		Required	F value
<u>Factor</u>	F value	0.05	0.01
Clone	5.5	2.0	2.6
Season	39.6	3.9	6.8
Atmosphere	23.4	3.9	6.8
C x S	4.3	2.0	2.6
C x A	2.8	2.0	2.6
S x A	11.9	3.9	6.8

^a scale of 0 to 200 where 0 = resistant 200 = maximum susceptibility

did not differ significantly in soft rot susceptibility from Russet Burbank.

All clones decreased in soft rot susceptibility to varying degrees during storage at 4°C (39°F). WC285-18 showed the greatest decrease in susceptibility.

When evaluated in the fall the mean soft rot susceptibility was the same whether evaluated in air or 8% CO_2 . However, after storage, 8 of 9 cultivars showed increased susceptibility in 8% CO_2 relative to air.

Centennial, although significantly less susceptible than Russet Burbank, did show considerable soft rot susceptibility. In prior years Centennial has shown considerable resistance.

C. Blackspot Susceptibility Evaluations.

The clones from the 1982 harvest differed significantly in blackspot susceptibility when evaluated after storage at 4°C (table 3). The susceptibility indices ranged from a low of 13 (WC285-18) to a high of 310 (AC77514-1) on a scale of 0-400. AC77514-1 is a cross between Lemhi and WC316-1 and Lemhi has very high blackspot susceptibility. TC2-1, the clone with the highest percent dry matter, was 2nd lowest in blackspot susceptibility and nearly free of shatter bruising. The clones did differ considerably in susceptibility to shatter bruising. WC285-18 and Centennial were relatively free of shatter while Russet Burbank and AC77513-1 shattered quite badly. The mean volume of the spot gives a fair indication of the degree of shatter - note the volumes range from 211 mm³ for WC285-18 to 1387 mm³ for AC77513-1.

Table 3 - Blackspot susceptibility of 9 clones (1982 crop) evaluated in the spring, 1983.

	% Loci	% Loci showing color	color	Mean vo	olume c	Mean volume of spot		Color			Means		
Cultivar	Stem	Mid	Bud	Stem	Mid	Bud	Stem	Mid	Bud	% Loci	Volume	Color	Index
AC71861-4	75	88	88	629	647	543	2.2	2.2	2.1	84	616	2.2	185
AC77652-1	100	100	100	634	1225	699	2.6	2.5	2.3	100	843	2.5	250
AC77149-2	88	75	75	498	716	548	1.4	1.8	1.7	79	287	1.6	126
AC77514-1	100	100	100	1128	1027	989	3.4	2.8	3.0	100	588	3.1	310
Centennial	100	20	25	302	482	275	2.1	2.3	2.0	58	353	2.1	122
R. Burbank	100	88	75	701	1586	1100	2.9	2.7	2.8	88	1129	2.8	246
WC285-18	13	13	13	231	352	49	1.0	1.0	1.0	13	211	1.0	13
AC77513-1	100	100	63	1484	1577	1101	2.6	3.0	2.2	88	1387	2.6	229
TC2-1	75	13 ^a	38	188	1195 ^a	272	1.2	1.0	1.0	42	552	1.1	46
Means	83	70	64	647	626	277	2.2	2.1	2.0				
e Compar	Clone Comparison - Analyses of Variance	nalyses	of Var	iance						d 5	1	% %) (() ()
							Required F	J P			Inuex - mean & noci x inuex O = resistant	iii % 100	וומבץ ו
	Measurement	ment		ш	F value	A	.05	.01		40		osns wn	400 = maximum susceptibility
	% Loci	% Loci showing color	color	-	7.29	7	2.5	3.7					

3.7

2.5

4.71

Mean volume of spot

3.7

2.5

39.3

Mean color

A comparison of the fall 1982 and spring 1983 blackspot response is given in table 4. The mean percentage of bruised loci that discolored, the mean volume of the discolored spot, the mean color, and the mean index did not change significantly with storage at 4°C. However, individual clones varied in response to storage. AC71861-4 and AC77652-1 increased in blackspot susceptibility during storage while AC77149-2, Russet Burbank and WC285-18 decreased in susceptibility. The remaining clones changed less in blackspot susceptibility. The order of blackspot susceptibility, however, did not change greatly with storage.

D. Mineral Content of Clones Evaluated During 1982-83 (table 5).

The tuber mineral content was determined with an ionized coupled plasma analyzer on a 2% acetic acid extract of dried and ground tuber tissue. The analyses were done in the CSU soil testing laboratory. Significant differences were found between clones in the concentration of each element. The range in concentrations varied with the element measured. Copper varied the most between clones and magnesium the least. Potassium, often implicated in blackspot susceptibility, varied from 1.80 to 2.16%. The relationship to blackspot susceptibility in these observations is not consistent. Russet Burbank, low in potassium, was blackspot susceptible and WC285-18, fairly high in potassium, was blackspot resistant; but, TC2-1, low in potassium, was also quite blackspot resistant.

Also, of interest in table 5 was that Russet Burbank was lowest not only in potassium but in calcium, magnesium, and zinc but highest in copper.

Table 4 - Comparison of blackspot susceptibility parameters (1982 crop) in the fall, 1982 and spring, 1983.

S '83(a)	185(5)	250(2)	126(6)	310(1)	122(7)	246(3)	13(9)	229(4)	46(8)	170	
Index F '82(a)	71(7)	180(5)	232(4)		126(6)	317(2)	(8)	250(3)	(6) 69	180	
S '83	2.2		1.6	3.1	2.1	2.8	1.0	2.6	1.1	2.4	
Color F '82 S	1.7	2.4	2.9	3.2	2.0	3.3	1.7	2.6	1.4	2.4	
s 183	616	843	587	588	353	1129	211	1387	552	779	
Volume F '82 S	242	327	009	1430	381	1237	294	1861	268	746	
ci S '83	84	100	62	100	58	88	13	88	42	72	
% Loci F '82	42	75	80	100	63	96	38	96	46	71	
Clone	A71861-4	AC77652-1	AC77149-2	AC77514-1	Centennial	R Burbank	WC285-18	AC77513-1	TC2-1	Mean	

(a) order of decreasing blackspot severity

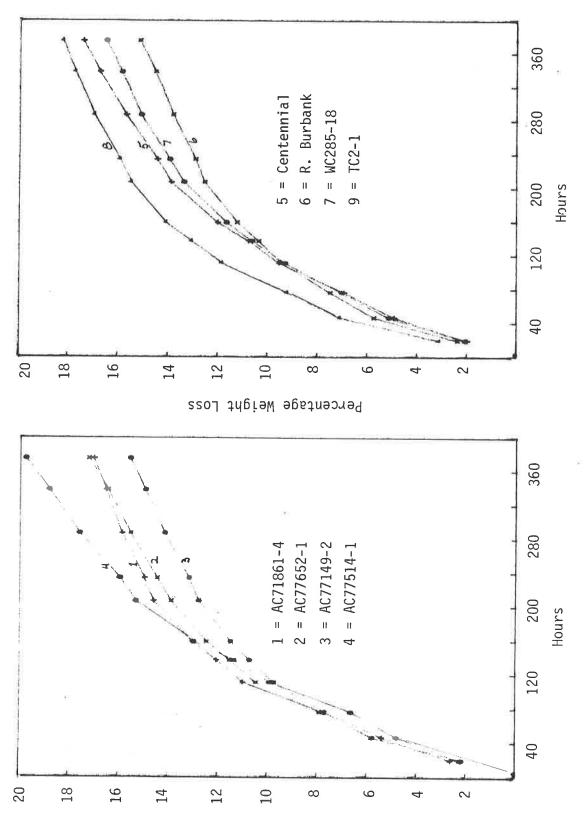
Table 5 - Potassium, phosphorus, calcium, magnesium, iron, copper and zinc contents of 9 clones evaluated in the 1982-83 storage season.

PPM Zinc	13.3	17.6	14.6	18.0	15.1	6.7	13.7	16.2	17.0	15.0	1.6	9.7-17.6	55%
PPM Copper	12.7	13.6	13.9	17.6	16.9	26.1	24.5	19.7	19.9	18.3	3.5	12.7-26.1	4 9%
PPM Iron	14.5	13.2	15.4	19.5	19.6	18.2	17.6	18.2	15.4	16.8	2.1	13.2-19.6	%29
% Magnesium	0.119	0.107	0.103	0.113	0.112	0.100	0.107	0.104	0.103	0.108	0.01	0.100-0.119	84%
% Calcium	0.105	0.108	0.136	0.116	0.095	0.094	0.118	0.114	0.103	0.110	0.014	0.094-0.136	%69
% Phosphorus	960.0	0.106	0.109	0.119	0.185	0.158	0.132	0.116	0.116	0.126	0.014	0.096-0.185	25%
% Potassium	1.94(7)	1.83(2)	1.92(6)	1.91(5)	1.90(4)	$1.80^{(1)}$	2.04(8)	2.16(9)	1.84(3)	1.93	0.16	1.80-2.16	83%
Clone	AC71861-4	AC77652-1	AC77149-2	AC77514-1	Centennial	R. Burbank*	WC285-18	AC77513-1	TC2-1	Mean	LSD 0.05	Range	% Lowest Highest

^{*} Standard

E. Tuber Condition of Clones Harvested Fall 1982 on April 8, 1983 After Storage at 4° C (39 $^{\circ}$ F) (table 6).

The relative humidity in the storage room varied from 60 to 70%. This provided sufficent mositure stress to identify clones with low resistance to moisture loss. AC77149-2, WC285-18 and AC77513-1 showed stem end shrivel while Centennial shrivelled slightly overall. The clones differed in dormancy. Russet Burbank, AC77149-2 and AC77652-1 showed no sprout activity. AC71861-4, AC77514-1, Centennial, WC285-18 and AC77513-1 were just breaking. TC2-1 had 1/16 to 1/8" sprouts.


F. Weight Loss of Cut Seed and Sprout Growth.

Tubers were removed from 4°C (39°F) on April 27, 1983 and carefully cut into seed pieces weighing from 50 to 59 grams (1.8 to 2.0 ounces). Without treatment 2 replications of the cut seed, weighing about 100 grams per replication, were placed at 18° to 21°C (65°-70°F) and 60 to 70% relative humidity. The replicated samples were carefully weighed at one or two day intervals. After 15 days, sprouts were removed and weighed and the seed pieces evaluated for condition. The pattern of weight loss is shown in figure 1. After 375 hours, the differences in weight loss between clones were highly significant. Russet Burbank and AC77149-2 lost weight most slowly while AC77514-1 and TC2-1 lost weight most rapidly. Up to 160 hours, however, differences were not large.

Sprout development after 375 hours is shown in figure 2. Only Centennial and WC285-18 produced significantly less sprout weight

Table 6 - Tuber condition of clones harvested fall, 1982 on April 8, 1983 after storage at 4°C (39 $^{\circ}\text{F}$).

AC71861-4	Just sprouting, quite firm, good condition light attractive periderm.
AC77652-1	Dormant, good tuber shape, firm good condition.
AC77149-2	Firm, moderate skinning, dormant, bad stem ends, poor shape.
AC77514-1	Just sprouting, good tuber shape and appearance, pleasant skin color.
Centennial	Just sprouting, slight shrivel, generally good condition.
R. Burbank	Firm, dormant, poor tuber shape, good condition.
WC285-18	Just sprouting, fair condition, alligator hide, shrivelled on stem end.
AC77513-1	Just sprouting, tubers shrivelled, bad stem ends, poor condition.
TC2-1	1/16" to 1/8" sprouts, good condition.

Percentage Weight Loss

Figure 1 - Weight loss of cut seed at $65^{\rm o}$ - $70^{\rm o}$ F ($18^{\rm o}$ - $21^{\rm o}$ C) and 60 to 70% relative humidity (1982-83).

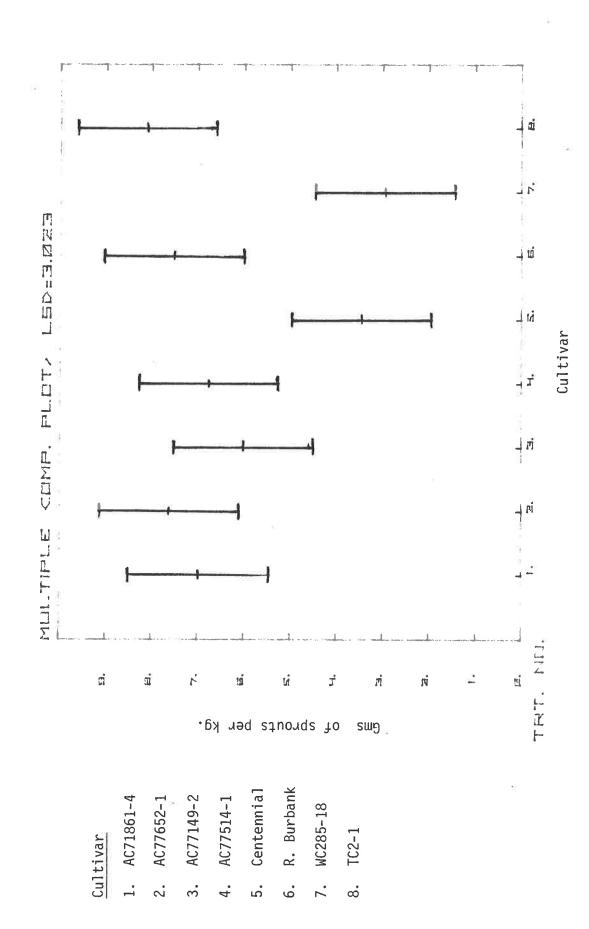


Figure 2 - Sprout growth on cut seed after 375 hours at $65^{\rm o}$ - $70^{\rm o}$ F ($18^{\rm o}$ - $21^{\rm o}$ C) and 60 to 70% relative humidity (1982-83).

than Russet Burbank. The other clones did not differ significantly from Russet Burbank in sprout production. Sprout production by TC2-1 was good.

Clones differed in the degree of multiple sprouting from one eye. R. Burbank produced single long sprouts, while other clones produced all multiple or mixture of single and multiple sprouts. Data was too limited to make firm conclusions on this. The color of the seed pieces ranged from very light (TC2-1) to very dark (Russet Burbank).

II. OBSERVATION OF CLONES HARVESTED IN 1983.

A. Percentage Dry Matter and Ascorbic Acid Content (table 7).

Dry matter percentages ranged from 21.0 to 25.9%. AC77514-1 and TC2-1 had significantly higher dry matter content, and AC77652-1 significantly lower dry matter content than Russet Burbank. The other clones did not differ significantly from Russet Burbank. Five clones were common to 1982 and 1983. A comparison of the dry matter content in the two years follows:

ž = :	Fall 1982	Fall 1983
AC77652-1	21.2	21.0
AC77514-1	22.9	25.9
Centennial	21.4	23.0
R. Burbank	22.3	23.7
TC2-1	25.3	25.3

Russet Burbank, lowest in ascorbic acid in 1982, was again significantly lower than all other test clones in 1983. A comparison

- Dry matter percentage and ascorbic acid content of 8 clones measured in the fall of 1983. (To be evaluated again in the spring of 1984) Table 7

	% D.M.	Ascorbic Acid mg/100 g	
Cultivar	F '83 S '84 (S.D.) ^b	F'83 S'84 (S.D.)	ا اسا
A72685-2 (3) ^a	24.8 (1.3)	20.4 (3.7)	
R. Burbank	23.7 (0.7)	14.8 (1.3)	
AC77652-1	21.0 (1.8)	20.0 (3.4)	
AC77514-1	25.9 (0.9)	25.5 (3.3)	
TC2-1	25.3 (1.6)	20.7 (2.9)	
AD74135-1 (2)	24.2 (1.3)	22.1 (1.91)	
Centennial	23.0 (1.3)	24.2 (3.2)	
A74212-1 (1)	24.5 (1.2)	19.8 (1.9)	
Mean	24.1 (1.5)	20.8 (3.2)	
LSD, 05	1.3	2.8	

^a 1982 yield and grade evaluation

b Standard deviation

of the 5 common clones in the two years is given below:

	Fall 1982	Fall 1983
AC77652-1	19.0	20.0
AC77514-1	18.7	25.5
Centennial	18.4	24.2
R. Burbank	12.0	14.8
TC2-1	23.1	20.7

B. Soft Rot Susceptibility Evaluations (table 8).

The eight clones differed significantly in soft rot susceptibility. However, all were quite susceptible. TC-1 was lowest in mean susceptibility and AC77652-1 the highest. Centennial was more suceptible than Russet Burbank. The clones varied in response to 8% carbon dioxide although most increased in susceptibility.

The soft rot indices for the five clones common to the two years are shown below:

	Fal	1 1982	Fal	1 1983
	air	8% CO2	air	8% CO ₂
AC77652-1	196	189	191	188
AC77514-1	172	185	191	181
Centennial	161	147	146	199
R. Burbank	153	187	136	161
TC2-1	154	173	81	181

C. Blackspot Susceptibility Evaluations (table 9).

Each tuber was bruised on opposite sides on the stem, middle and bud end. On one side a 100 gram weight was dropped 45 cm in the three locations and on the opposite side a 150 gram weight was dropped the same distance. The impact portion of the weight was hemi-spherical

Table 8 - Soft rot susceptibility indices of 8 clones evaluated in air and $8\%~{
m CO}_2$ in the fall of 1983. (To be evaluated again in the spring of 1984)

	Mean							ş	
	² 00								
Mean	Air								
Σ	.83 <u>\$ '84</u> 187								
	F '83 187	149	190	186	131	168	173	154	167
Spring 1984	Air 8% CO ₂								
Fall 1983	8% C0 ₂ 189	161	188	181	181	192	199	194	186
Fall	Air 185	136	191	191	81	145	146	113	149
%	<u>Cultivar</u> A 72685-2	R. Burbank	AC77652-1	AC77514-1	TC2-1	AD74135-1	Centennial	A74212-1	Mean

Analyses of Variance

Required F	0.01	2.9	7.0	2.9
Require	0.05	2.2	4.0	2.2
72	띠	3.4	21.3	3.1
		Clones	Atmosphere	C × A

Table 9 - Blackspot susceptibility of 8 clones evaluated in the fall of 1983. (To be evaluated again in the L-2 = 150 grams dropped 45 cm. L-1 = 100 grams dropped 45 cm. spring of 1984)

Index	92	38 120	37 135	61 142	44 150	225 288	125 128	135 135	94 154
Color	2.2	1.8	2.2	2.1	1.5	3.0	2.5	2.5	2.2
Mean Vol.	453	299 470	458 410	159 464	206 297	1111 1699	394 747	317 466	424 679
% Loci	42	21 50	17 54	29 71	29 88	75 96	50 71	54 54	40
Bud	2.0	2.0	1.5 2.0	2.0	1.0	3.0	2.5	2.8	2.1 1.9
Color	2.2								
Stem		1.5						2.8	
Spot	468 258	352 318	471 195	0 496	141 299	1571 2118	386 537	397 631	474 607
1. of Mid		293 685							
Mean vol. of Stem Mid	415	253 406	352 398	175 380	266 224	702 1493	323 577	227 364	339 606
color	38 38	13	25 50	0 20	13	88 88	50 88	50 50	29 60
howing	63 63	25 50	13 50	50 88	50 75	88 100	50	50 38	49 63
% Loci showing color Stem Mid Bud	25 88	25 88	13 63	38 75	25 88	100	50 75	63 75	43 82
	L1 L2	L1 L2	L1 L2	L1 L2	L1 L2	L1 L2	L1 L2	L1 L2	L1 L2
Cultivar	A72685-2	R. Burbank	AC77652-1	AC77514-1	TC2-1	AD74135-1	Centennial	A74212-1	Mean

Analyses of Variance

Required F	0.01	3.25	7.50	3.25
Requ	0.05	2.32	4.20	2.32
	Color	5.4	90.0	1.2
F values	Mean Volume	14.4	14.1	1.1
	% Loci	4.0	26.0	1.2
		Clone	Level	7 × C

with a one inch diameter. Eight tuber replicates were used.

The 150 gram weight increased the mean number of bruised loci showing color from 40 to 69%, and the mean volume of bruised area from 424 to 679 mm³, but mean color only increased from 2.2 to 2.3. The mean blackspot indices were 94 and 154 for the 100 and 150 gram weight, respectively.

Highly significant differences between clones were found in blackspot susceptibility. However, no clone was highly resistant. In most previous comparisons R. Burbank was more susceptible than Centennial but in the fall of 1983 the reverse occurred when impacted with 100 grams. No difference occurred between the two clones when impacted with 150 grams.

The five clones common to 1982 and 1983 were not consistent between years except for Centennial. The blackspot indices were as follows:

	Fall 1982	Fall 1983
AC77652-1	180	135
AC77514-1	320	142
Centennial	126	128
R. Burbank	317	120
TC2-1	64	150

The increase in the blackspot index for TC2-1 was due mostly to an increase in the number of loci showing color rather than a marked increase in color.

A similar inconsistency between years was found in volume of the blackspot:

	Fall 19	982 <u>Fall</u>	1983
AC77652-1	327 mr	m ³ 410	$_{\rm mm}^{\rm 3}$
AC77514-1	1430 mm	n ³ 464	3
Centennial	381 mm	n ³ 747	mm ³
R. Burbank	1237 mn	n ³ 470	$_{\rm mm}^{\rm 3}$
TC2-1	268 mm	n ³ 297	$_{mm}^3$

TC2-1 and AC77652-1 were more consistent between years than the other clones. Generally shatter bruise was less in 1983.

When evaluating for blackspot, a high percentage of hollow heart was detected in AC77514-1.

D. Percent Tuber Weight Loss and Sprouting.

Tuber weight loss was followed at 4°C (39°F) and 10°C (50°F). The relative humidity ranged from 55 to 60% at 4°C and averaged around 50% at 10°C. Ten tuber replicates were used for each clone. Each tuber was weighed to an accuracy of one gram. The experiment was started Oct. 14, 1983 and weighings were done monthly. Results up to Jan. 18, 1984 are given in table 10. Significant differences were found between cultivars at each weighing. R. Burbank lost weight most slowly and Centennial most rapidly.

The data from the weighing of Jan. 18, 1984 are shown graphically in figure 3 (10° C) and in figure 4 (4° C). At 10° C all cultivars had lost significantly more weight than Russet Burbank. The actual difference in loss between R. Burbank and most clones ranged between 1.5 and 2% but AC77514-1 and Centennial lost 4 to 5% more than Russet Burbank.

Table 10 - Percentage tuber weight loss and sprouting of 8 clones harvested fall, 1983

i i	0		-		(
Clones	39 days	10 ⁰ C	4°C 10	ays 10 ⁰ C	96 days	days 10 ⁰ C	Sprouts after 96 days at 10°C grams per kilogram
AC77514-1	2.2	4.4	4.0	0.9	0.9	8.9	1.78
TC2-1	1.2	4.0	2.9	4.6	3.9	6.9	4.04
AD74135-1	1.6	2.9	3.3	4.1	4.4	7.1	6.22
Centennial	3,3	5.9	0.6	7.8	13.3	6.6	2.01
A74212-1	2.6	3.4	3.8	4.4	5.1	9.9	2.54
A72685-2	2.4	2.9	3.5	4.1	4.4	6.4	6.22
R. Burbank	8.0	3.5	2.3	4.3	3,3	5.0	0
AC77652-1	2.0	3.8	3.4	4.9	4.8	6.5	1.64
Mean	2.0	3.8	4.0	5.0	5.7	7.2	
LSD _{.05}	9.0	6.0	1.4	1.0	2.1	1.3	k

Approximate Vapor Pressure Deficits:

$$4^{\circ}C = 2.7 \text{ mm Hg}$$

 $10^{\circ}C = 4.5 \text{ mm Hg}$

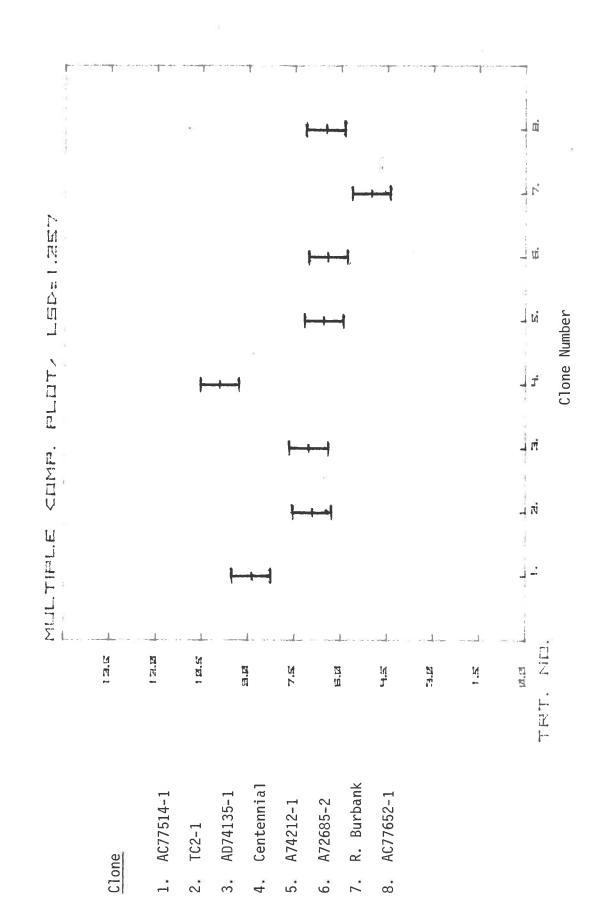


Figure 3 - Accumulated weight loss of whole tubers when stored at $10^{\rm O}{\rm C}$ ($50^{\rm O}{\rm F}$) from October 14, 1983 to January 18, 1984.

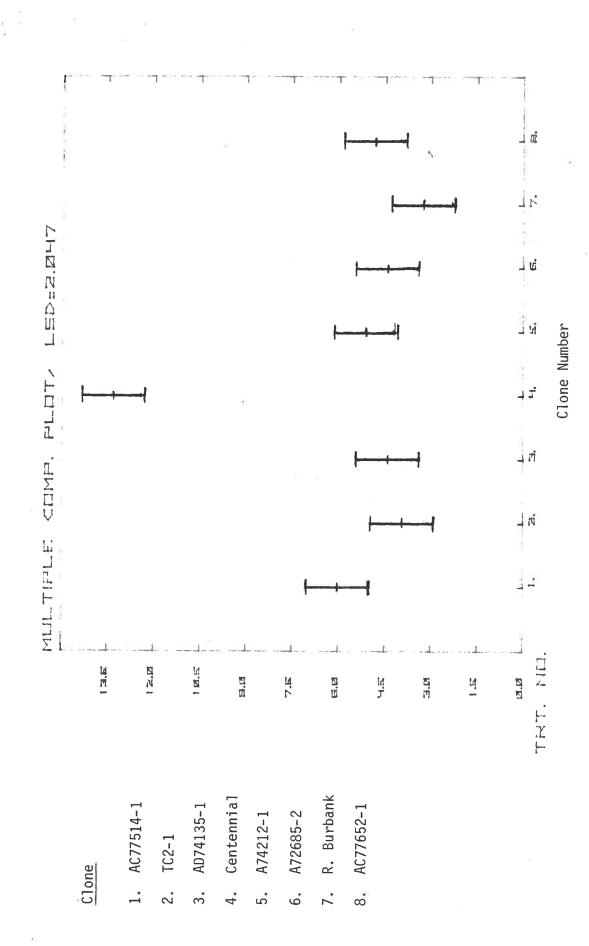


Figure 4 - Accumulated weight loss of whole tubers when stored at 4°C (39°F) from October 14, 1983 to January 18, 1984.

At $4^{\rm O}{\rm C}$, only AC77514-1 and Centennial had lost significantly more weight than Russet Burbank.

Sprouts were removed from tubers stored at 10°C and weighed on Jan. 18, 1984. Significant differences between clones were found. Russet Burbank had not sprouted but the growth on the other clones ranged from 1.64 gms/kg to 6.22 gms/kg (table 10). The sprout growth could have contributed to higher rate of weight loss. However, sprout growth on AC77514-1 and Centennial was small so the greater weight loss perhaps was due to a more porous periderm. As mentioned above, significant differences between these two cultivars and Russet Burbank also occurred at 4°C where sprouting had not occurred.

E. Mineral Content of Clones Evaluated During 1983-84 (table 11).

The test clones differed significantly in concentrations of potassium, phosphorus, calcium and zinc but did differ significantly in magnesium and iron.

Potassium ranged from 1.45 to 1.84%. A72685-2, AC77652-1 and TC2-1 contained significantly more potassium than Russet Burbank while AC77514-1, AD74135-1, Centennial and A74212-1 did not differ significantly.

The potassium content of the five clones common to the two years is shown below:

	1982	<u>1983</u>
AC77652-1	1.83	1.75
AC77514-1	1.91	1.61
Centennial	1.90	1.64
R. Burbank	1.80	1.51
TC2-1	1.84	1.84

Table 11 - Potassium, phosphorus, calcium, magnesium, iron, copper, and zinc content of 8 clones evaluated in 1983-84 storage season.

Clone	% Potassium	% Phosphorus	% Calcium	% Magnesium	PPM Iron	PPM Copper	PPM Zinc
A72685-2	1.71 (.15)	0.146 (.018)	0.308 (.333)	0.094 (.014)	34.2 (18)	5.5 (2)	13.9 (2.1)
R. Burbank	1.51 (.16)	0.122 (.008)	0.446 (.527)	0.091 (.013)	56.5 (7)	2.5 (.9)	10.8 (3.3)
AC77652-1	1.75 (.14)	0.132 (.013)	0.453 (.394)	0.103 (.011)	54.6 (7)	1.5 (.8)	15.3 (3.1)
AC77514-1	1.61 (.11)	0.145 (.020)	0.544 (.288)	0.097 (.014)	51.8 (26)	2.4 (.7)	12.2 (2.8)
TC2-1	1.84 (.21)	0.145 (.023)	0.191 (.140)	0.097 (.017)	43.1 (11)	3.1 (1.5)	9.4 (4.3)
AD74135-1	1.45 (.05)	0.124 (.011)	0.045 (.006)	0.084 (.007)	32.6 (20)	0.9 (.8)	4.3 (1.3)
Centennial	1.64 (.05)	0.170 (.022)	0.041 (.004)	0.094 (.006)	35.6 (25)	0.0 (0)	4.1 (2.3)
A74212-1	1.43 (.07)	0.118 (.008)	0.040 (.008)	0.081 (.009)	27.8 (17)	0.4 (.5)	3.1 (1.6)
Mean	1.618	0.138	0.259	0.093	42.025	2.038	
LSD.05	0.18	0.017	0.336	NS	NS	1.34	2.8
Range	1.43-1.84	0.118-0.170	0.040-0.544	0.081-0.103	27.8-56.5	0-5.5	3.1-15.3
% Lowest Highest	78%	%69	%	%62	46%		20%

III. INFLUENCE OF STORAGE AND TIME OF BRUISING ON BLACKSPOT SUSCEPTIBILITY OF RUSSET BURBANK.

Blackspot of Russet Burbank potatoes is quite often detected by shipping point inspectors in potatoes that are retained a few days on the shipping floor after grading and packaging. The time of the injury which incited the blackspot is unknown. Some feel that the major cause of the blackspot is injury that occurs during post storage handling operations - fluming, washing, grading, packaging, etc.

This rather limited study was done to gain some information on this question.

The treatments and the results are summarized in table 12. The four treatments were replicated four times with ten tubers in each replication. The tubers were bruised on the stem, middle, and bud end with a hemi-spherical 150 gram weight dropping 45 cm.

Treatment one was bruised and immediately placed at 28°C (82°F) and read for blackspot after 36 hours. Treatment two was bruised the same as treatment one but placed immediately in 4°C (39°F) storage and read for blackspot after five months without warming. Treatment three was the same as treatment two but was warmed at 28°C (82°F) for 36 hours before reading. Treatment four was placed in 4°C without bruising and stored five months. Tubers were then bruised and read after holding at 28°C for 36 hours.

The treatments differed significantly in the % loci discolored, color and mean volume of the spot and index. Treatments one and two resulted in nearly identical blackspot as indicated by the % loci discolored,

Table 12 - Influence of storage and time of bruising on blackspot susceptibility of Russet Burbank.

8

2

Mean	Volume	2.4 498 1/5	2.3 494 177	2.6 762 200	3.2 986 301	
	Mean	73	77	77	94	80
% Loci discolored	Bud	70	78	73	88	77
	Mid	82	86	06	95	92 sig. 0.01
	Stem	63	55	89	100	71
	Treatment	Bruise at 4 ⁰ C 9/30/82 Hold 28 ⁰ C 36 hrs.	Bruise at 4° C 9/30/82 Store 5 mo. at 4° C	Bruise at 4° C 9/30/82	Hold 28°C 36 hrs. Store 5 mo. 4°C Bruise at 4°C	Hold 28°C 36 hrs.

4

Analyses of Variance

ñ	1.50 05 1.50 05	11.0	0.4	327	39
	0.01	5.3	0.9	0.9	0.9
	0.02	3.3	3.5	3,5.	3.5
risons	F value	10.0	11.2	4.9	23.0
Treatment Compar	Factors F value 0.05 0	% Loci discolored	Color	Mean volume	Index

color, mean volume and index. This indicates that bruises before storage will develop blackspot during storage at 4°C identical to that which develops if placed immediately at 28°C .

Treatment three would simulate warming potatoes following storage without additional bruising. This treatment did not differ significantly from treatments one and two. However, the volume of the spot increased from 494 to 762 mm^3 and index increased from 177 to 200.

Treatment four, which was bruised following storage, resulted in a significant increase in the % loci discolored, color, volume of spot and index. This indicates that blackspot susceptibility increased during storage. Perhaps this was due to water loss.

From this small experiment it is apparant that blackspot may develop from harvest and storage bruises and/or from bruises incurred during removal from storage, grading, and packing. Thus, the effect is accumulative. Bruising following storage resulted in more severe blackspot than bruising before storage.

IV. ADDITIONAL STUDIES UNDERWAY

The test clones from the 1983 harvest will be evaluated in April for the same parameters measured last fall. Cut seed weight loss and sprouting behavior will also be assayed.

The following seedling clones are being evaluated for various aspects of cooking quality by Dr. Joe Maga: A72685-1, TC2-1, A74212-1 and A74133-1. Russet Burbank and Centennial will be used for reference.

The relationship of enzymatic browning of tissue slices (frozen and fresh) to blackspot susceptibility of the 1983 test clones is being evaluated. Various materials such as diphenylamine (used to control apple scald), and sulfur carrying substances are being evaluated for their effectiveness to control the browning reaction.

Several tetrazolium dyes (to measure redox potential) are being studied in an attempt to evaluate tuber redox potential and find out if any relationship exists between redox potential and blackspot susceptibility.