# 2010 Research Progress Report Potato Breeding and Selection

Submitted by

## David G. Holm and Caroline Gray San Luis Valley Research Center

to the

### Colorado Potato Administrative Committee (Area II) Research Committee

and the

**Colorado Potato Administrative Committee (Area III)** 













#### Mission Statement

"The mission of the Colorado Potato Breeding and Selection Program is to develop cultivars that will help assure that the Colorado potato industry remains productive, competitive, and sustainable and to develop cultivars that provide the consumer with improved nutrition and quality."

#### **Table of Contents**

| Mission                                                              | Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                           |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Table of                                                             | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ii                                          |
| Preface .                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                           |
| Acknowl                                                              | ledgments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vi                                          |
| Introduc                                                             | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                           |
| C                                                                    | reeding  Germplasm Accession and Introgression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                           |
| Seedling                                                             | Selection and Clonal Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                           |
| Collabor                                                             | ative Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                           |
| 2A-B.<br>3A-E.<br>4A-E.<br>5A-E.<br>6A-E.<br>7A-E.<br>8A-E.<br>9A-E. | Generalized potato breeding and selection scheme used at the San Luis Valley Research Center Preliminary Trial Intermediate Main Yield Trial Intermediate Specialty Yield Trial Advanced Yield Trial Southwestern Regional Russet Trial Southwestern Regional Red Trial Southwestern Regional Specialty Trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>10<br>15<br>20<br>25<br>30<br>35<br>40 |
| 11A-E.<br>12A-E.<br>13A-E.<br>14A-B.                                 | Western Regional Main Trial  Advanced and Western Regional Red Trial  Advanced and Western Regional Specialty Trial  Advanced and Western Regional Chipping Trial  San Luis Valley Chipping Study  Summary comparison of advanced selections and named cultivars for yield, grade, maturity, specific gravity, and grade defects  Detailed data appropriate for advanced selections and half the second selections and selections are selections and selections and selections are selections and selections are selections and selections and selections are selections as selections are selections and selections are selections and selections are selections and selections are selections are selections and selections are selections are selections are selections are selections are selections as selections are selections are selections are selections are selections are selections are selections. | 50<br>55<br>60<br>65                        |
| oa-an.                                                               | Detailed data summaries for advanced selections and named cultivars:  Russets  AC99375-1RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75<br>76<br>77<br>78<br>79                  |

|                | Rio Grande Russet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Russet Norkotah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Russet Nugget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Reds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | CO98012-5R 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | CO99076-6R 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | CO99256-2R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | CO00277-2R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | CO00291-5R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Colorado Rose 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | Rio Colorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | Sangre-S10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Specialties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | CO97226-2R/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | CO97232-1R/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | CO97232-2R/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | CO97233-3R/Y 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CO97222-1R/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | CO97227-2P/PW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | AC99329-7PW/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | AC99330-1P/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | CODD TWO TWO THE REPORT AND PROPERTY HER PROPERTY IN THE PROPERTY HAVE A CONTRACT OF THE PROPERTY OF THE PROPE |
|                | ATC00293-1W/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | CO00405-1RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | CO00412-5W/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | CO00415-1RF 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | CO01399-10P/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Mountain Rose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Purple Majesty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | Yukon Gold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Chippers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | CO00188-4W 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | CO00197-3W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | CO00270-7W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Atlantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | Chipeta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Figures</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.             | Photographs of advanced selections 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Appendic       | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.             | Cultural management information for the Potato Breeding and Selection Program's trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | at the San Luis Valley Research Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.             | General procedures used for postharvest evaluations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Notes          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Preface**

We are pleased to provide this copy of the "2010 Potato Breeding and Selection Research Progress Report." This report includes research funded by the Colorado potato industry (Area II and Area III), Colorado State University (Agricultural Experiment Station and the Department of Horticulture and Landscape Architecture), the National Institute of Food and Agriculture (NIFA, formerly CSREES), the US Potato Board and PVP royalties. These funds collectively continue to allow us to strengthen our overall collaborative research efforts with colleagues at CSU and with other universities and agencies. All of these efforts are aimed at developing improved potato cultivars for Colorado.

Ongoing support by the Colorado potato industry is key to maintaining funds received from NIFA and other potential sources. NIFA and PVP funding have allowed us to significantly expand our breeding efforts to include resistance to the following: PVY, late blight (foliar and tuber), nematodes, pink rot, storage rots [dry rot (*Fusarium* and early blight) and bacterial soft rot], corky ringspot, and resistance to powdery scab.

The Colorado Potato Breeding and Selection Program relies on the invaluable cooperation of several growers, shippers, and research personnel to assess the production, adaptability, marketability, and other characteristics of advanced selections.

Collaborators and areas of collaboration are:

- Robert D. Davidson and Andrew J. Houser Disease Screening and Evaluation
- Samuel Y. C. Essah Cultivar Specific Production Management
- Sastry S. Jayanty Cultivar Specific Postharvest Management and Physiology
- · Cecil Stushnoff and Henry J. Thompson Nutritional Characteristics and Health Attributes
- Jorge M. Vivanco Molecular Studies Nematode Resistance
- Kent P. Sather and Richard W. Haslar Potato Certification Service
- Jennifer K. Bond Marketing
- Jairam Vanamala and Lavanya Reddivari Bioactive Compounds for Health Laboratory
- Marissa Bunning Sensory Evaluations
- Colorado Potato Growers
- Colorado Certified Potato Growers' Association
- Southwest Regional Potato Breeding and Cultivar Development Cooperators (Colorado, Texas, and California). The overall objective of this research group to develop and evaluate improved potato cultivars to meet the production, marketing, and producer/consumer needs of the Southwest U.S.
- Other cooperating research/extension programs several other "partners" throughout the United States and Canada provide breeding material and opportunities to screen our germplasm under various growing conditions and disease pressures not usually available in Colorado.

Best wishes for the 2011 production season!

Sincerely,

Dave Holm and Caroline Gray

#### Acknowledgments

We would like to express appreciation to the following individuals, groups, and organizations for their efforts on behalf of the Colorado Potato Breeding and Selection Program in 2010.

- ✓ Financial Support from the following is gratefully acknowledged:
  - Colorado Potato Industry Area II and III
  - Colorado State University Colorado Agricultural Experiment Station & the Department of Horticulture and Landscape Architecture
  - USDA National Institute of Food and Agriculture Potato Research Award Number 2010-34141-21252
  - United States Potato Board
  - Stone's Farm Supply in-kind support
- ✓ Colorado Potato Administration Committee, Area II Research Committee (Members and At-large Members) and Area III
- ✓ Technical Support

Fahrettin Goktepe Marlee Canada Mitzi Cisneros Megan Duran Sarah Ehrlich Chantel Friedrich Marshall McDaniel Melissa Quintana Lacy Shawcroft Taylor Trujillo

Numerous other temporary support personnel assisted the project particularly during seed cutting, planting, and harvest.

✔ Research Collaborators - Colorado State University

Rob Davidson Samuel Essah Sastry Jayanty Cecil Stushnoff
Henry Thompson Jorge Vivanco Jennifer Bond Marissa Bunning
Jairam Vanamala Lavanya Reddivari

✓ Staff - San Luis Valley Research Center

Deanna Brown Tim Poe Ron Price Stan Price Sharon Yust

✔ Potato Certification Service

Kent Sather Rick Haslar Andrew Houser Carolyn Keller Steve Keller Rue Snell Teresa Rivera

✓ The Colorado Potato Breeding and Selection Program relies on the cooperation of several growers, shippers, processors, and research personnel to assess the production, adaptability, marketability, and other characteristics of advanced selections from our program. We sincerely appreciate their support and the valuable feedback they provide. We thank many cooperating breeding and selection programs throughout the United States and Canada who have provided breeding material and opportunities to screen our germplasm under various growing conditions and disease pressures not usually available in Colorado.

## 2010 Research Progress Report Potato Breeding and Selection

#### Submitted by

#### David G. Holm and Caroline Gray

#### San Luis Valley Research Center

#### Introduction

The major objectives of the Colorado Potato Breeding and Selection Program are: (1) to develop new potato cultivars with increased yield, improved quality, improved nutritional and health characteristics, resistance to diseases and pests, and tolerance to environmental stresses; (2) to collaborate with growers, shippers, processors, and research/extension personnel to assess the production, adaptability, marketability, and other characteristics of advanced selections from the Colorado program; (3) to provide a basic seed source of selections to growers for seed increase and commercial testing; (4) to evaluate promising selections for possible export (interstate and international).

The primary emphasis is placed on the development of russet cultivars. The balance of the breeding effort is devoted to developing red, specialty, and chipping cultivars. This broad approach is important because it recognizes the diverse markets accessed by potato growers throughout Colorado.

Besides the major objectives outlined previously, specific breeding emphasis is being placed on identifying germplasm and developing cultivars that have: (1) early vine maturity and early tuber bulking; (2) immune to PVY; resistant to (3) late blight (foliar and tuber); (4) storage rots [dry rot (Fusarium and early blight) and bacterial soft rot]; (5) pink rot; (6) nematodes; (7) powdery scab; (8) corky ringspot, and (9) that have improved nutritional quality, health attributes, and other "consumer" characteristics such as improved red skin color retention and improved shelf life. Continued emphasis will be placed on breeding/selecting for "low input" cultivars, primarily for reduced nitrogen and fungicide input, for improved postharvest and processing qualities such as lengthened dormancy. Cultivars with these characteristics will help assure that the potato industry in Colorado will remain productive and in a competitive position.

Cultivar development is a five-step process, encompassing first, the generation of segregating populations followed by evaluation for visual agronomic traits. This involves identifying parents with desired characteristics for crossing to produce true (botanical) potato seed (TPS). TPS is planted to produce seedling tubers for field planting. Second, superior progeny are identified and these selections

undergo additional evaluation for economically important characteristics. Third, a profile of cultivar specific management criteria - production and postharvest - are developed, which a grower, shipper, or processor, and/or marketer may fine tune for his/her operation. Fourth, a basic seed source of selections is developed to facilitate further seed increase and commercial testing of advanced selections. Finally, market development takes place to determine consumer acceptance and recognition in the market for the intended market. Each of these integrated steps is critical in the development and commercialization of new cultivars and provides the base for a successful cultivar release. Without all components, fruition is difficult to attain.

The process of cultivar development takes 14+ years. Years 1 and 2 are the potato breeding phase of the development process. As indicated earlier, parents are selected and crossed to produce true potato seed. Seedling tubers are then produced from the true seed in year 2. Subsequent years (3+) represent the selection phase of the development process. Each year represents another cycle of field selection. As each cycle is completed, fewer and fewer clones remain and the amount of seed per selection is increased. Clones remaining after eight cycles of field selection are released to growers for evaluations prior to official release as a named cultivar. Table 1 presents a detailed description of the steps involved in developing new potato cultivars.

The long-term process of cultivar development fosters collaborations among growers, shippers, processors, researchers, and extension personnel. The network must provide for a grower evaluation process to assist in the development of management guidelines, detect unforeseen problems, and determine the predictability of performance of each new cultivar.

Because the time line for cultivar development is lengthy, improved methods to speed up the breeding and selection process are continually evaluated. A new successful potato cultivar requires a combination of a multitude of traits. Thus alone, marker assisted selection has met with only limited usefulness other than for targeting a few specific traits in potato cultivar development and therefore, has not been used extensively in potato breeding. A priority of the cultivar development process should always be to provide a good solid foundation for the development and commercialization of new potato cultivars prior to the "formal" naming and release process. As such, potato cultivar development is a long-term process and is difficult to shorten significantly.

#### **Potato Breeding**

Germplasm Accession and Introgression. Germplasm is continually being acquired from various sources with late blight resistance, virus resistance (PXY, PVY, and PLRV), nematode resistance, and other characteristics of importance. Primary sources are the USDA-ARS in Aberdeen, Idaho; Prosser, Washington; Madison, Wisconsin; and Oregon State University. Some material has also been acquired from Asia, Europe, and South America. All of these materials are being incorporated into our germplasm in the breeding program.

Recently several seed families of a diploid hybrid population of diploid Solanum phureja x Solanum stenotomum adapted to long-day growing conditions by recurrent selection by Dr. Kathy Haynes, USDA-ARS, Beltsville, Maryland. This material was initially planted in 2009 and seedling tubers were planted in the field in 2010. Initial field selection occurred in the fall of 2010 for dark yellow flesh. This project dovetails with hybridization and selections efforts already underway for high carotenoid clones previously received from Dr. Chuck Brown, USDA-ARS, Prosser Washington, and will be part of an ongoing effort to enhance carotenoid levels in our breeding program.

<u>Crossing</u>. The Colorado Potato Breeding and Selection Program intercrossed 99 parental clones in 2010 in two separate crossing blocks. The emphasis of the first crossing block was russet, chipper, specialty cultivar development and PVY resistance. The second crossing block emphasized russet and specialty cultivar development and PVY resistance. Seed from 278 combinations was obtained.

Approximately 57,200 seedling tubers representing 218 families were produced from 2008 and 2009 crosses for initial field selection in 2011. These seedlings represent crosses segregating primarily for russet, reds, specialty types, and resistance to late blight, PVY, corky ringspot, and nematodes. Second through fourth size seedling tubers will be distributed to Idaho (USDA-ARS), Minnesota, North Dakota, Oregon, Texas, Wisconsin, and Alberta, Canada (Agriculture Canada).

#### Seedling Selection and Clonal Development

Colorado grew 84,924 first-year seedlings representing 478 families in 2010, with 623 selected for subsequent planting, evaluation, and increase in future years. A portion of these seedlings were obtained from the USDA-ARS (Aberdeen, Idaho), Agriculture Canada, Texas A&M University, North Dakota State University, and Oregon State University. Another 1,166 clones were in 12-hill, preliminary, and intermediate stages of selection. At harvest, 370 were saved for further increase and evaluation. Fifty-five advanced selections were saved and will be increased in 2011 pending further evaluation. Another 281 selections and cultivars were maintained for germplasm development, breeding, and other experimental purposes including seed increase/maintenance.

Field trials conducted in 2010 included: Preliminary Trial, San Luis Valley Chipping Trial, Intermediate Yield Trial, Intermediate Specialty Yield Trial, Advanced Yield Trial, Advanced Fingerling Trial, Southwestern Regional Russet Trial, Southwestern Regional Red Trial, Southwestern Regional Chip Trial, Western Regional Russet/Processing Trial, Western Regional Red Trial, Western Regional Specialty Trial, and Western Regional Chipping Trial. All trials are grown under "low input" conditions, primarily for reduced nitrogen and fungicide. Tables 2-14 present the data for the various trials. Appendix 1 summarizes the cultural information for the trials planted at the San Luis Valley Research Center in 2010.

A total of 201 samples were evaluated for two or more of the following postharvest characteristics: blackspot susceptibility, storage weight loss, dormancy, enzymatic browning, specific gravity, french fry color, french fry texture, and chip color. Appendix 2 lists the procedures used for the postharvest evaluations for the trials.

Advanced selections evaluated in the Southwest Regional Trials, Western Regional Trials, or by Colorado producers in 2010, included 6 russets (AC99375-1RU, CO97087-2RU, CO98067-7RU, CO99053-3RU, CO99053-4RU, and CO99100-1RU), 2 reds (CO99076-6R and CO99256-2R), 9 chippers (AC01151-5W, CO95051-7W, CO97043-14W, CO00188-4W, CO00197-3W, CO00270-7W, CO02024-9W, CO02033-1W, and CO02321-4W), and 8 specialties (AC97521-1R/Y, AC99329 -7PW/Y, ATC00293 -1 W/Y, CO97226-2R/R, CO97232-2R/Y, CO00412-5W/Y, CO01399-10P/Y, TC02072-3P/P). An additional 12 selections are being considered for exclusive release.

Since progressing through the various trials including the Western Regional Chip Trials, CO95051-7W has undergone extensive testing in the USPB/SFA Chip Trials and the USPB Fast Track program. This round white selection has excellent chip color after long term storage. This selection will be exclusively

released in 2011. Plant Variety Protection was granted to Rio Grande Russet in 2010. PVP certificates for Purple Majesty and Colorado Rose are expected soon in 2011. Applications for Canela Russet, Rio Colorado, and Mesa Russet are still pending.

Table 15 summarizes the performance of advanced selections that are available for growers to evaluate in 2011. Detailed data summaries for each of the advanced selections are presented in Tables 16A-AN. Figure 1 includes photographs of these selections. Data summaries for additional selections that are available for exclusive release are available upon request.

#### **Collaborative Studies**

The following collaborative studies were conducted in 2010:

- Several advanced selections were evaluated for disease symptom expression screening trials in Colorado. These trials were conducted in cooperation with Rob Davidson, Andrew Houser, Kent Sather, and Rick Haslar. Diseases included were bacterial ring rot (21 selections), potato leafroll virus (28 selections), PVY (28 selections), powdery scab (23 selections), and corky ringspot (8 selections) in Colorado.
- Several advanced selections were distributed to state/USDA-ARS collaborators in Idaho, Michigan, Minnesota, North Dakota, Oregon, Pennsylvania, Texas, Washington, and Wisconsin for additional disease evaluations. These selections were screened for one or more of the following diseases: early blight, late blight, common scab, corky ringspot, nematodes, Fusarium dry rot, Pectobacterium soft rot, and *Verticillium* wilt.. In addition, selections were provided to the National Trials for late blight and common scab screening.
- Fourteen advanced selections were evaluated in cultural management trials in collaboration with Samuel Essah.
- Several selections were evaluated for various postharvest characteristics in collaboration with Sastry Jayanty.
- Thirty-six selections were provided for antioxidant activity screening in cooperation with Cecil Stushnoff. Included in this group were seven selections are being evaluated for a second year to determine the influence of developmental growth stage of the potato tubers on bioactives related to colon cancer.
- Tubers of selected clones/cultivars were provided to Jairam Vanamala and Lavanya Reddivari to support grant research projects conducted by the Bioactive Compounds for Health Laboratory in the Department of Food Science and Human Nutrition at CSU.
- Five selections were provided to Jennifer Bond for branding projects associated with a Colorado Department of Agriculture Specialty Block Grant.
- Perlimninary studies were initiated with Drs. Dyakar Badri and Jorge Vivanco to developing a quick and reliable method to screen potato germplasm and advanced clones for resistance against pink rot.

Year Comments

- 1 Select parents for crossing and true seed production in the greenhouse.
- 2 Produce seedling tubers from true seed in the greenhouse.
- 70,000-80,000 seedling tubers planted in the field as single hills. Several thousand tubers are obtained from other breeding programs. Initial selection of this material takes place at harvest. First cycle of field selection.
- 4 Twelve-hills of each single-hill selection are planted. Second cycle of field selection.
- Preliminary Selections 1 (P1). Third cycle of field selection (48 plant tuber-unit seed increase). Initial evaluations for chipping qualities (chip color after various storage regimes and specific gravity) are conducted this year and subsequently.
- 6 Preliminary Selections 2 (P2). Fourth cycle of field selection (96 plant tuber-unit seed increase). Initial evaluations to characterize selections for blackspot bruise potential, storage weight loss, dormancy, and enzymatic browning. Initial evaluations for french fry potential (french fry color and specific gravity) are conducted this year and subsequently. Evaluations for chipping qualities are continued.
- Intermediate Selections. Fifth cycle of field selection. Initial data collected on yield, grade, and growth characteristics. Plant a 144 plant tuber-unit seed increase and a 2 rep x 25 plants intermediate yield trial (IYT).
- 8-9, 14+ Advanced Selections: Includes selections that have advanced from the IYT. Additionally selections are included that have graduated from the Southwest Regional and Western Regional Trials. The advanced yield trials for reds, specialty types, and chippers are planted with entries in the Western Regional Red, Specialty and Chip Trials. Selections are in the 6th-7th and 12+ cycles of field selection. All advanced yield trials (AYT) have 4 reps x 25 plants. Sixth- and seventh- year field selections respectively have a 400/1,600 plant tuber-unit seed increase.

Selections in the sixth cycle of selection are indexed for viruses and cleanup/micropropagation is initiated. Testing for ring rot and PLRV reaction is also initiated at this stage and continues as needed. Selections in the 7th cycle of field selection are entered into cultural management trials and postharvest disease reaction (dry rot and soft rot) evaluations.

- All 8th year selections have a 1/2 acre tuber-unit seed increase planted. These selections are entered in the Southwestern Regional Trials (4 locations CO, TX, two in CA). Cultural management trials and postharvest disease reaction evaluations continue as needed.
- 11-13 All 9<sup>th</sup> year or older selections generally have a 1 acre or greater seed increase. These selections are entered in the Western Regional Trials (4 trials): main (russets and long whites), red, specialty, and chip. The Western Coordinating Committee (WCC-27) directs these trials at 10+ locations in the Western United States each year. Cultural management trials and postharvest disease reaction evaluations continue as needed.
  - 11+ Grower/industry evaluations. The Colorado Potato Breeding and Selection Project relies on the cooperation of several growers, shippers, and processors to evaluate advanced selections for adaptability and marketability.
  - 14+ Release as a named cultivar.

Table 2A. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Preliminary Trial entries - 2010.

|               | DΙ      | ackspot Inde | <sup>1</sup> | %<br>Weight       | Dormancy            | Enzymatic  |
|---------------|---------|--------------|--------------|-------------------|---------------------|------------|
| Clone         | Bud End | Stem End     | Average      | Loss <sup>2</sup> | (Days) <sup>3</sup> | Browning 4 |
| 07S018        | 5.0     | 5.0          | 5.0          | 4.2               | 42                  | 4.6        |
| 07S019        | 5.0     | 5.0          | 5.0          | 3.0               | 42                  | 3.4        |
| 07S020        | 5.0     | 5.0          | 5.0          | 3.6               | 56                  | 4.8        |
| AC03346-1RU   | 5.0     | 5.0          | 5.0          | 1.9               | 130                 | 3.6        |
| AC05141-2RU   | 4.8     | 4.7          | 4.8          | 3.0               | 81                  | 4.2        |
| AC05175-3P/Y  | 4.6     | 4.1          | 4.4          | 3.1               | 95                  | 4.0        |
| AC05175-9PW/Y | 4.7     | 4.7          | 4.7          | 3.2               | 102                 | 2.2        |
| AC05178-2RW/W | 4.5     | 4.9          | 4.7          | 4.4               | 74                  | 2.8        |
| AC05282-2RU   | 4.3     | 3.6          | 4.0          | 3.2               | 102                 | 4.2        |
| CO05024-11RU  | 4.8     | 4.0          | 4.4          | 4.1               | 88                  | 3.8        |
| CO05037-2R/Y  | 4.6     | 4.2          | 4.4          | 2.7               | 81                  | 4.6        |
| CO05037-3W/Y  | 4.7     | 4.5          | 4.6          | 2.5               | 88                  | 3.8        |
| CO05040-1RU   | 5.0     | 5.0          | 5.0          | 2.8               | 102                 | 3.6        |
| CO05048-3RU   | 4.3     | 4.8          | 4.6          | 1.6               | 130                 | 4.4        |
| CO05062-2P/P  |         | -            |              | 3.6               | 77                  |            |
| CO05068-1RU   | 4.5     | 3.7          | 4.1          | 2.6               | 84                  | 2.0        |
| CO05080-1P/PW |         |              |              | 2.9               | 84                  | 1200       |
| CO05110-6RU   | 4.4     | 3.4          | 3.9          | 1.7               | 140                 | 3.4        |
| CO05122-1W/Y  | 4.6     | 4.2          | 4.4          | 4.5               | 56                  | 4.2        |
| CO05132-2RU   | 4.8     | 4.8          | 4.8          | 2.7               | 112                 | 4.8        |
| CO05149-3RU   | 4.9     | 4.7          | 4.8          | 4.3               | 70                  | 4.6        |
| CO05152-5RU   | 5.0     | 4.5          | 4.8          | 3.1               | 91                  | 4.2        |
| CO05175-1RU   | 4.9     | 4.6          | 4.8          | 3.4               | 77                  | 2.8        |
| CO05189-2R    | 4.4     | 4.7          | 4.6          | 1.9               | 98                  | 4.2        |
| CO05189-3RU   | 5.0     | 5.0          | 5.0          | 3.0               | 140                 | 4.4        |

Table 2A continued on next page

Table 2A (cont'd). Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Preliminary Trial entries - 2010.

|                    | Bl      | ackspot Inde | 1<br>ex | %<br>Weight       | Dormancy            | Enzymatic              |
|--------------------|---------|--------------|---------|-------------------|---------------------|------------------------|
| Clone              | Bud End | Stem End     | Average | Loss <sup>2</sup> | (Days) <sup>3</sup> | Browning <sup>4</sup>  |
| CO05206-8RU        | 5.0     | 5.0          | 5.0     | 2.4               | 98                  | 5.0                    |
| CO05211-4R         | 5.0     | 4.8          | 4.9     | 3.1               | 126                 | 2.2                    |
| CO05228-4R         | 4.7     | 4.5          | 4.6     | 6.6               | 98                  | 1.6                    |
| CO05228-7R         | 4.9     | 5.0          | 5.0     | 4.5               | 84                  | 4.6                    |
| CO05245-1R         | 4.6     | 4.6          | 4.6     | 5.3               | 119                 | 4.0                    |
| TC05276-7P/PW      | 4.6     | 4.4          | 4.5     | 3.3               | 84                  | 1. <del>111111</del> 1 |
| Canela Russet      | 5.0     | 5.0          | 5.0     | 3.4               | 147                 | 4.2                    |
| Centennial Russet  | 5.0     | 4.8          | 4.9     | 4.7               | 83                  | 4.4                    |
| Purple Majesty     | Marie . | ****         | ****    | 6.3               | 61                  | 54446                  |
| Rio Grande Russet  | 5.0     | 4.8          | 4.9     | 3.2               | 103                 | 3.2                    |
| Russet Burbank     | 4.7     | 4.3          | 4.5     | 1.5               | 83                  | 3.4                    |
| Russet Norkotah-S3 | 4.8     | 4.7          | 4.8     | 2.3               | 117                 | 3.6                    |
| Russet Nugget      | 5.0     | 4.9          | 5.0     | 3.0               | 97                  | 4.8                    |
| Sangre-S10         | 4.8     | 5.0          | 4.9     | 1.6               | 104                 | 3.4                    |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 2B. Specific gravity, french fry color, and texture for Preliminary Trial clones - 2010

|               |          | Fry     | Color      | Fry '   | Texture <sup>2</sup> |
|---------------|----------|---------|------------|---------|----------------------|
|               | Specific | Αι      | 3 wks 55F+ | At      | 3 wks 55F-           |
| Clone         | Gravity  | Harvest | 9 wks 45F  | Harvest | 9 wks 45F            |
| 07S018        | 1.075    | 3       | 4          | 2       | 2                    |
| 07S019        | 1.068    | 3       | 4          | 2       |                      |
| 07S020        | 1.067    | 3       | 4          | 3       | 2 3                  |
| AC03346-1RU   | 1.077    | 3       | 3          | 3       | 3                    |
| AC05141-2RU   | 1.092    | 1       | 1          | 5       | 4                    |
| AC05175-3P/Y  | 1.072    | 1       | 1          | 5       | 4                    |
| AC05175-9PW/Y | 1.076    | 2       | 3          | 4       | 3                    |
| AC05178-2RW/W | 1.080    | 3       | 4          | 4       | 3<br>3               |
| AC05282-2RU   | 1.083    | 3       | 3          | 3       | 3                    |
| CO05024-11RU  | 1.087    | 2       | 2          | 4       | 4                    |
| CO05037-2R/Y  | 1.083    | 1       | 1          | 4       | 4                    |
| CO05037-3W/Y  | 1.078    | 1       | 2          | 3       | 4                    |
| CO05040-1RU   | 1.077    | 1       | 1          | 5       | 4                    |
| CO05048-3RU   | 1.070    | 3       | 3          | 3       | 3                    |
| CO05062-2P/P  | 1.087    |         |            | 3       | 2                    |
| CO05068-1RU   | 1.094    | 1       | 1          | 3       | 3                    |
| CO05080-1P/PW | 1.096    |         |            | 5       | 5                    |
| CO05110-6RU   | 1.086    | 1       | 1          | 4       | 5                    |
| CO05122-1W/Y  | 1.080    | 3       | 3          | 3       | 2                    |
| CO05132-2RU   | 1.089    | 2       | 1          | 4       | 4                    |
| CO05149-3RU   | 1.082    | 0       | 0          | 4       | 5                    |
| CO05152-5RU   | 1.080    | 2       | 4          | 3       | 3                    |
| CO05175-1RU   | 1.083    | 2       | 1          | 3       | 4                    |
| CO05189-2RU   | 1.077    | 3       | 4          | 3       | 3                    |
| CO05189-3RU   | 1.069    | 2       | 3          | 2       | 2                    |

Table 2B (cont'd). Specific gravity, french fry color, and texture for Preliminary Trial clones - 2010.

|                    |          | Fry     | Color 1    | Fry '   | Texture <sup>2</sup> |  |
|--------------------|----------|---------|------------|---------|----------------------|--|
|                    | Specific | At      | 3 wks 55F+ | At      | 3 wks 55F+           |  |
| Clone              | Gravity  | Harvest | 9 wks 45F  | Harvest | 9 wks 45F            |  |
| CO05206-8RU        | 1.084    | 1       | 0          | 2       | 3                    |  |
| CO05211-4R         | 1.086    | 1       | a 1        | 3       | 3                    |  |
| CO05228-4R         | 1.084    | 1       | 1          | 2       | 3                    |  |
| CO05228-7R         | 1.081    | 3       | 3          | 2       | 2                    |  |
| CO05245-1R         | 1.082    | 3       | 3          | 2       | 2                    |  |
| TC05276-7P/PW      | 1.089    |         | No. 600    | 4       | 4                    |  |
| Canela Russet      | 1.075    | 2       | 2          | 3       | 3                    |  |
| Centennial Russet  | 1.079    | 3       | 4          | 2       | 2                    |  |
| Purple Majesty     | 1.076    |         |            | 2       | 3                    |  |
| Rio Grande Russet  | 1.091    | 2       | 2          | 3       | 3                    |  |
| Russet Burbank     | 1.075    | 1       | 3          | 3       | 4                    |  |
| Russet Norkotah-S3 | 1.083    | 2       | 3          | 3       | 2                    |  |
| Russet Nugget      | 1.084    | 1       | 2          | 4       | 4                    |  |
| Sangre-S10         | 1.068    | 4       | 4          | 2       | 2                    |  |

<sup>&</sup>lt;sup>1</sup> Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 3A. Yield, grade and tuber shape for Intermediate Main Yield Trial entries - 2010.

|                 |       |       | J  | J <b>S</b> #1 |        | 3     | -                        |
|-----------------|-------|-------|----|---------------|--------|-------|--------------------------|
| Clone           | Total | Total | %  | 4-10 oz       | >10 oz | <4 oz | Tuber Shape <sup>1</sup> |
| AC03300-1RU     | 398   | 234   | 59 | 226           | 8      | 160   | Ob                       |
| AC03409-1RU     | 420   | 358   | 86 | 270           | 89     | 55    | Ob                       |
| CO03177-2RU     | 309   | 266   | 86 | 212           | 54     | 43    | L                        |
| CO03186-1RU     | 437   | 382   | 87 | 272           | 110    | 46    | Ob                       |
| CO03186-2RU     | 401   | 355   | 88 | 274           | 82     | 44    | Ob                       |
| CO04122-1RU     | 322   | 195   | 61 | 188           | 7      | 126   | Ob                       |
| CO04123-2RU     | 407   | 296   | 73 | 272           | 26     | 109   | L                        |
| CO04204-7RU     | 407   | 347   | 86 | 276           | 71     | 49    | Ob                       |
| CO04211-4RU     | 342   | 308   | 90 | 226           | 82     | 29    | Ob                       |
| CO04220-7RU     | 378   | 316   | 84 | 260           | 56     | 60    | Ob                       |
| CO04233-1RU     | 319   | 283   | 89 | 243           | 40     | 34    | Ob                       |
| Canela Russet   | 329   | 298   | 90 | 181           | 118    | 31    | Ob                       |
| Russet Norkotah | 418   | 382   | 92 | 135           | 247    | 16    | L                        |
| Mean            | 376   | 309   | 82 | 233           | 76     | 62    |                          |
| $LSD^{2}(0.05)$ | 95    | 105   | 9  | 57            | 87     | 25    | ****                     |

<sup>&</sup>lt;sup>1</sup>Tuber shape: Ob=oblong; L=long...

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 3B. Grade defects for Intermediate Main Yield Trial entries - 2010.

| Clone           | %<br>External<br>Defects | External<br>Defects Observed <sup>2</sup> | %<br>Hollow<br>Heart |
|-----------------|--------------------------|-------------------------------------------|----------------------|
| AC03300-1RU     | 1.1                      | MS*, SG                                   | 0.0                  |
| AC03409-1RU     | 1.5                      | GC, GR*                                   | 0.0                  |
| CO03177-2RU     | 0.0                      | ,                                         | 0.0                  |
| CO03186-1RU     | 2.4                      | MS*, GR*                                  | 0.0                  |
| CO03186-2RU     | 0.4                      | GC*                                       | 0.0                  |
| CO04122-1RU     | 0.4                      | MS*                                       | 0.0                  |
| CO04123-2RU     | 0.3                      | GR*                                       | 0.0                  |
| CO04204-7RU     | 1.0                      | MS*                                       | 0.0                  |
| CO04211-4RU     | 1.9                      | MS, GR*                                   | 0.0                  |
| CO04220-7RU     | 0.7                      | MS*                                       | 0.0                  |
| CO04233-1RU     | 0.6                      | MS*                                       | 0.0                  |
| Canela Russet   | 0.0                      |                                           | 0.0                  |
| Russet Norkotah | 5.0                      | MS*, SG, GR*                              | 2.7                  |

Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 3C. Growth characteristics of Intermediate Main Yield Trial entries - 2010.

|                         | %     | Emergence    | Vine               | Stems/ | Vine              | Vine              | Vine                  |
|-------------------------|-------|--------------|--------------------|--------|-------------------|-------------------|-----------------------|
| Clone                   | Stand | Uniformity 1 | Vigor <sup>2</sup> | Plant  | Size <sup>3</sup> | Type <sup>4</sup> | Maturity <sup>5</sup> |
| AC03300-1RU             | 100   | 3.5          | 4.0                | 3.7    | 5.0               | 3.5               | 4.0                   |
| AC03409-1RU             | 100   | 1.0          | 4.0                | 1.2    | 4.0               | 3.5               | 3.0                   |
| CO03177-2RU             | 100   | 2.5          | 3.0                | 2.5    | 3.0               | 3.0               | 2.0                   |
| CO03186-1RU             | 100   | 3.5          | 3.0                | 2.8    | 4.0               | 3.0               | 2.5                   |
| CO03186-2RU             | 100   | 3.5          | 2.5                | 3.6    | 2.5               | 2.5               | 2.5                   |
| CO04122-1RU             | 100   | 2.0          | 3.5                | 6.3    | 2.5               | 2.5               | 1.5                   |
| CO04123-2RU             | 100   | 3.5          | 3.5                | 4.7    | 3.0               | 2.5               | 3.0                   |
| CO04204-7RU             | 100   | 3.0          | 3.0                | 3.2    | 3.0               | 3.0               | 3.0                   |
| CO04211-4RU             | 100   | 3.0          | 3.0                | 3.9    | 2.5               | 3.0               | 2.0                   |
| CO04220-7RU             | 100   | 3.0          | 3.0                | 2.6    | 3.0               | 2.5               | 2.5                   |
| CO04233-1RU             | 100   | 2.0          | 2.5                | 1.8    | 3.0               | 3.0               | 3.0                   |
| Canela Russet           | 96    | 2.0          | 3.0                | 1.4    | 4.0               | 4.0               | 3.0                   |
| Russet Norkotah         | 100   | 3.0          | 3.0                | 2.8    | 3.0               | 2.5               | 1.5                   |
| Mean                    | 100   | 2.7          | 3.2                | 3.1    | 3.3               | 3.0               | 2.6                   |
| LSD <sup>6</sup> (0.05) | NS    | 0.8          | 1.2                | 2.1    | 0.7               | 1.1               | 1.6                   |
|                         |       |              |                    |        |                   |                   |                       |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference; NS=not significant.

Table 3D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Intermediate Main Yield Trial entries - 2010.

|                 | Bla     | ackspot Inde | x <sup>1</sup> | %<br>Weight | Dormancy | Enzymatic             |
|-----------------|---------|--------------|----------------|-------------|----------|-----------------------|
| Clone           | Bud End | Stem End     | Average        | Loss        | (Days)3  | Browning <sup>4</sup> |
| AC03300-1RU     | 4.5     | 4.3          | 4.4            | 4.3         | 42       | 4.4                   |
| AC03409-1RU     | 4.9     | 4.8          | 4.9            | 1.4         | 126      | 5.0                   |
| CO03177-2RU     | 4.9     | 4.6          | 4.8            | 4.0         | 63       | 3.4                   |
| CO03186-1RU     | 4.9     | 4.8          | 4.9            | 2.3         | 63       | 5.0                   |
| CO03186-2RU     | 4.7     | 5.0          | 4.9            | 2.2         | 63       | 3.6                   |
| CO04122-1RU     | 5.0     | 5.0          | 5.0            | 5.4         | 63       | 4.2                   |
| CO04123-2RU     | 4.2     | 3.6          | 3.9            | 3.4         | 63       | 4.4                   |
| CO04204-7RU     | 5.0     | 4.7          | 4.9            | 2.8         | 70       | 4.6                   |
| CO04211-4RU     | 5.0     | 4.2          | 4.6            | 7.8         | 28       | 5.0                   |
| CO04220-7RU     | 4.9     | 4.8          | 4.9            | 2.5         | 70       | 3.8                   |
| CO04233-1RU     | 5.0     | 5.0          | 5.0            | 1.9         | 70       | 4.8                   |
| Canela Russet   | 5.0     | 4.2          | 4.6            | 3.3         | 133      | 4.8                   |
| Russet Norkotah | 4.6     | 3.9          | 4.3            | 2.7         | 70       | 4.0                   |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

 $<sup>^{3}</sup>$ Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 3E. Specific gravity, french fry color, and texture for Intermediate Main Yield Trial entries - 2010.

|                 |          | Fry     | Color      | Fry Texture <sup>2</sup> |            |  |
|-----------------|----------|---------|------------|--------------------------|------------|--|
|                 | Specific | At      | 3 wks 55F+ | At                       | 3 wks 55F+ |  |
| Clone           | Gravity  | Harvest | 9 wks 45F  | Harvest                  | 9 wks 45F  |  |
| AC03300-1RU     | 1.103    | 0       | 0          | 5                        | 5          |  |
| AC03409-1RU     | 1.095    | 1       | 2          | 4                        | 3          |  |
| CO03177-2RU     | 1.098    | 0       | 0          | 5                        | 4          |  |
| CO03186-1RU     | 1.099    | 1       | 2          | 4                        | 4          |  |
| CO03186-2RU     | 1.086    | 2       | 2          | 3                        | 3          |  |
| CO04122-1RU     | 1.088    | 0       | 0          | 4 :                      | 3          |  |
| CO04123-2RU     | 1.097    | 1       | 0          | 4                        | 3          |  |
| CO04204-7RU     | 1.090    | 0       | 0          | 3                        | 4          |  |
| CO04211-4RU     | 1.085    | 1       | 2          | 4                        | 3          |  |
| CO04220-7RU     | 1.092    | 0       | 1          | 4                        | 4          |  |
| CO04233-1RU     | 1.087    | 0       | 2          | 5                        | 4          |  |
| Canela Russet   | 1.104    | 0       | 0          | 5                        | 5          |  |
| Russet Norkotah | 1.083    | 1       | 1          | 2                        | 3          |  |

<sup>&</sup>lt;sup>1</sup> Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 4A. Yield, grade and tuber shape for Intermediate Specialty Yield Trial entries - 2010.

| ,                       | Yield (Cwt/A) US #1 |       |    |     |        |       |             |
|-------------------------|---------------------|-------|----|-----|--------|-------|-------------|
| Clone                   | Total               | Total | %  |     | >10 oz | <4 oz | Tuber Shape |
| AC03534-2R/Y            | 530                 | 440   | 83 | 349 | 91     | 89    | Ov          |
| CO04029-3RW/Y           | 282                 | 128   | 44 | 125 | 2      | 148   | R           |
| CO04029-5W/Y            | 540                 | 356   | 66 | 318 | 38     | 183   | R           |
| CO04056-3P/PW           | 421                 | 184   | 44 | 179 | 5      | 236   | Ov          |
| CO04056-7P/PW           | 429                 | 205   | 48 | 205 | 0      | 225   | Ov          |
| CO04058-3RW/RW          | 404                 | 165   | 41 | 159 | 6 2    | 241   | Ov          |
| CO04063-4R/R            | 303                 | 77    | 26 | 75  |        | 227   | Ov          |
| CO04067-8R/Y            | 504                 | 372   | 74 | 327 | 46     | 122   | Ov          |
| CO04067-10W/Y           | 564                 | 407   | 73 | 368 | 40     | 151   | Ov          |
| CO04099-3W/Y            | 430                 | 247   | 58 | 235 | 12     | 183   | Ov          |
| CO04099-4W/Y            | 406                 | 288   | 71 | 246 | 41     | 110   | Ov          |
| CO04159-1R              | 326                 | 267   | 82 | 243 | 25     | 54    | Ov          |
| CO04159-3R/Y            | 441                 | 332   | 76 | 311 | 21     | 98    | Ov          |
| CO04159-4R/Y            | 330                 | 166   | 51 | 163 | 3      | 163   | Ov          |
| CO04188-4R/Y            | 540                 | 409   | 76 | 360 | 49     | 128   | Ov          |
| CO04223-6R              | 345                 | 270   | 78 | 230 | 40     | 73    | Ov          |
| CO04287-1R              | 307                 | 228   | 74 | 221 | 7      | 70    | R           |
| CO04287-2R              | 340                 | 304   | 90 | 233 | 71     | 32    | Ov          |
| Purple Majesty          | 527                 | 298   | 57 | 272 | 27     | 224   | Ov          |
| Sangre-S10              | 426                 | 378   | 89 | 233 | 146    | 38    | Ov          |
| Yukon Gold              | 361                 | 338   | 94 | 189 | 149    | 23    | Ov          |
| Mean                    | 417                 | 279   | 66 | 240 | 39     | 134   |             |
| LSD <sup>2</sup> (0.05) | 78                  | 79    | 13 | 55  | 47     | 52    |             |

<sup>&</sup>lt;sup>1</sup>Tuber shape: R=round; Ov=oval.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 4B. Grade defects for Intermediate Specialty Yield Trial entries - 2010.

| Clone                          | % External Defects | External<br>Defects Observed <sup>2</sup> | %<br>Hollow<br>Heart <sup>3</sup> |
|--------------------------------|--------------------|-------------------------------------------|-----------------------------------|
| AC03534-2R/Y                   | 0.4                | MS*                                       | 0.0                               |
| CO04029-3RW/Y<br>CO04029-5W/Y  | 2.4                | GC*, GR                                   | 0.0                               |
| CO04029-3 W/Y<br>CO04056-3P/PW | 0.2                | GR*                                       | 0.0                               |
| CO04056-7P/PW                  | 0.3<br>0.0         | GR*                                       | 0.0                               |
| CO04058-3RW/RW                 | 0.0                |                                           | 0.0                               |
| CO04038-3RW/RW<br>CO04063-4R/R | 0.0                |                                           | 0.5                               |
| CO04067-4R/Y                   | 2.0                | Me cek en                                 | 0.0                               |
| CO04067-3R/1<br>CO04067-10W/Y  | 1.3                | MS, GC*, GR<br>GR*                        | 0.0                               |
| CO04007-10W/1<br>CO04099-3W/Y  | 0.0                | GK,                                       | 0.0                               |
| CO04099-3W/Y                   | 2.2                | GR*                                       | 0.4<br>0.0                        |
| CO04059-4 W/ I                 | 1.6                | MS*, GC*, GR                              | 0.0                               |
| CO04159-3R/Y                   | 2.8                | MS*, GC, GK                               | 0.0                               |
| CO04159-3R/Y                   | 0.5                | MS*                                       | 0.0                               |
| CO04188-4R/Y                   | 0.7                | MS*, GR                                   | 0.0                               |
| CO04223-6R                     | 0.0                | MD, OK                                    | 0.9                               |
| CO04287-1R                     | 2.7                | MS, GC*                                   | 0.0                               |
| CO04287-2R                     | 1.1                | GC*                                       | 0.0                               |
| Purple Majesty                 | 1.0                | MS*                                       | 1.4                               |
| Sangre-S10                     | 2.4                | MS, GC*, GR                               | 1.1                               |
| Yukon Gold                     | 0.3                | GR*                                       | 0.0                               |

Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 4C. Growth characteristics of Intermediate Specialty Yield Trial entries - 2010.

| Clone           | %<br>Stand | Emergence<br>Uniformity | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type <sup>4</sup> | Vine<br>Maturity <sup>5</sup> |
|-----------------|------------|-------------------------|----------------------------|-----------------|---------------------------|---------------------------|-------------------------------|
| AC03534-2R/Y    | 88         | 3.0                     | 3.0                        | 2.8             | 4.0                       | 3.0                       | 3.0                           |
| CO04029-3RW/Y   | 92         | 2.0                     | 2.0                        | 4.0             | 2.0                       | 2.0                       | 2.0                           |
| CO04029-5W/Y    | 92         | 3.5                     | 3.0                        | 3.7             | 4.0                       | 2.5                       | 3.0                           |
| CO04056-3P/PW   | 100        | 3.0                     | 3.0                        | 3.6             | 3.0                       | 3.0                       | 3.0                           |
| CO04056-7P/PW   | 100        | 4.0                     | 3.0                        | 3.5             | 3.0                       | 2.5                       | 3.0                           |
| CO04058-3RW/RW  | 100        | 3.0                     | 2.5                        | 3.9             | 4.0                       | 3.0                       | 3.0                           |
| CO04063-4R/R    | 100        | 1.5                     | 3.0                        | 4.4             | 2.5                       | 3.0                       | 2.5                           |
| CO04067-8R/Y    | 96         | 3.0                     | 3.0                        | 3.3             | 4.0                       | 3.5                       | 3.0                           |
| CO04067-10W/Y   | 100        | 4.0                     | 3.0                        | 4.0             | 4.5                       | 3.0                       | 3.5                           |
| CO04099-3W/Y    | 100        | 3.5                     | 3.0                        | 3.3             | 3.0                       | 3.0                       | 3.0                           |
| CO04099-4W/Y    | 100        | 4.0                     | 3.0                        | 4.4             | 4.5                       | 3.0                       | 2.5                           |
| CO04159-1R      | 100        | 2.5                     | 3.0                        | 2.6             | 3.5                       | 3.5                       | 3.0                           |
| CO04159-3R/Y    | 100        | 4.0                     | 3.0                        | 2.7             | 3.5                       | 3.0                       | 2.5                           |
| CO04159-4R/Y    | 96         | 2.5                     | 3.0                        | 2.2             | 2.5                       | 2.5                       | 1.5                           |
| CO04188-4R/Y    | 96         | 3.5                     | 2.5                        | 3.3             | 4.0                       | 2.5                       | 3.0                           |
| CO04223-6R      | 100        | 2.0                     | 3.5                        | 3.3             | 2.5                       | 2.5                       | 3.0                           |
| CO04287-1R      | 100        | 3.0                     | 3.5                        | 2.4             | 2.0                       | 3.0                       | 2.0                           |
| CO04287-2R      | 100        | 2.0                     | 4.0                        | 3.2             | 1.5                       | 2.5                       | 2.0                           |
| Purple Majesty  | 100        | 4.0                     | 3.0                        | 4.3             | 3.5                       | 2.5                       | 3.0                           |
| Sangre-S10      | 100        | 2.5                     | 3.0                        | 2.0             | 4.5                       | 3.0                       | 4.0                           |
| Yukon Gold      | 100        | 3.5                     | 3.0                        | 1.6             | 3.5                       | 3.0                       | 3.0                           |
| Mean            | 98         | 3.0                     | 3.0                        | 3.3             | 3.3                       | 2.8                       | 2.8                           |
| $LSD^{6}(0.05)$ | 7          | 0.8                     | 0.7                        | 0.9             | 1.0                       | 1.0                       | 1.0                           |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 4D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Intermediate Specialty Yield Trial entries - 2010.

|                | Bla     | ackspot Inde | x 1           | %<br>Weight | Dormancy | Enzymatic             |
|----------------|---------|--------------|---------------|-------------|----------|-----------------------|
| Clone          | Bud End | Stem End     | Average       | Loss        | (Days)3  | Browning <sup>4</sup> |
| AC03534-2R/Y   | 4.7     | 5.0          | 4.9           | 3.4         | 70       | 4.2                   |
| CO04029-3RW/Y  | 4.7     | 5.0          | 4.9           | 3.9         | 42       | 2.4                   |
| CO04029-5W/Y   | 4.4     | 2.6          | 3.5           | 6.0         | 28       | 2.4                   |
| CO04056-3P/PW  |         |              |               | 3.1         | 70       |                       |
| CO04056-7P/PW  |         |              |               | 4.2         | 42       |                       |
| CO04058-3RW/RW | ****    |              |               | 1.8         | 70       |                       |
| CO04063-4R/R   | ****    |              |               | 5.5         | 63       |                       |
| CO04067-8R/Y   | 4.8     | 2.6          | 3.7           | 5.1         | 49       | 2.8                   |
| CO04067-10W/Y  | 4.2     | 3.1          | 3.7           | 7.9         | 49       | 4.4                   |
| CO04099-3W/Y   | 4.0     | 3.6          | 3.8           | 1.9         | 70       | 4.4                   |
| CO04099-4W/Y   | 4.4     | 3.8          | 4.1           | 2.7         | 42       | 4.8                   |
| CO04159-1R     | 4.8     | 4.5          | 4.7           | 6.0         | 84       | 1.6                   |
| CO04159-3R/Y   | 4.7     | 4.3          | 4.5           | 18.2        | 49       | 2.0                   |
| CO04159-4R/Y   | 4.9     | 4.6          | 4.8           | 4.0         | 70       | 5.0                   |
| CO04188-4R/Y   | 4.5     | 4.3          | 4.4           | 5.0         | 56       | 2.8                   |
| CO04223-6R     | 4.8     | 3.6          | 4.2           | 6.3         | 42       | 1.8                   |
| CO04287-1R     | 4.6     | 4.5          | 4.6           | 6.8         | 63       | 3.2                   |
| CO04287-2R     | 4.9     | 4.9          | 4.9           | 7.3         | 70       | 3.0                   |
| Purple Majesty | ****    | -            | ( <del></del> | 5.6         | 42       | ****                  |
| Sangre-S10     | 4.8     | 4.7          | 4.8           | 2.6         | 63       | 3.2                   |
| Yukon Gold     | 5.0     | 4.4          | 4.7           | 2.0         | 63       | 4.6                   |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 4E. Specific gravity, french fry color, and texture for Intermediate Specialty Yield Trial entries - 2010.

|                |          | Fry     | Color      | Fry '   | Texture <sup>2</sup> |
|----------------|----------|---------|------------|---------|----------------------|
|                | Specific | At      | 3 wks 55F+ | At      | 3 wks 55F+           |
| Clone          | Gravity  | Harvest | 9 wks 45F  | Harvest | 9 wks 45F            |
| AC03534-2R/Y   | 1.074    | 2       | 4          | 2       | 2                    |
| CO04029-3RW/Y  | 1.077    | 2       | 2          | 1       | 1                    |
| CO04029-5W/Y   | 1.081    | 1       | 2          | 1       | ī                    |
| CO04056-3P/PW  | 1.092    |         |            | 3       | 4                    |
| CO04056-7P/PW  | 1.081    |         |            | 2       | 3                    |
| CO04058-3RW/RW | 1.101    | 1       | 2          | 4       | 4                    |
| CO04063-4R/R   | 1.075    |         |            | 1       | 1                    |
| CO04067-8R/Y   | 1.089    | 1       | 1          | 2       | 2                    |
| CO04067-10W/Y  | 1.090    | 1       | 1          | 3       | 4                    |
| CO04099-3W/Y   | 1.093    | 1       | 1          | 4       | 5                    |
| CO04099-4W/Y   | 1.103    | 1       | 0          | 5       | 5                    |
| CO04159-1R     | 1.084    | 3       | 3          | 2       | 3                    |
| CO04159-3R/Y   | 1.082    | 2       | 2          | 2       | 2                    |
| CO04159-4R/Y   | 1.089    | 1       | 3          | 2       | 2                    |
| CO04188-4R/Y   | 1.092    | 2       | 1          | 3       | 3                    |
| CO04223-6R     | 1.087    | 0       | 1          | 3       | 2                    |
| CO04287-1R     | 1.088    | 0       | 2          | 3       | 3                    |
| CO04287-2R     | 1.081    | 2       | 3          | 3       | 3                    |
| Purple Majesty | 1.094    |         |            | 3       | 3                    |
| Sangre-S10     | 1.086    | 2       | 4          | 3       | 3                    |
| Yukon Gold     | 1.093    | 1       | 2          | 3       | 4                    |

<sup>&</sup>lt;sup>1</sup> Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup> Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 5A. Yield, grade and tuber shape for Advanced Yield Trial entries - 2010.

|                 | -     |       | Yield |         |        |       |             |
|-----------------|-------|-------|-------|---------|--------|-------|-------------|
|                 |       |       | J     | JS #1   |        |       | - 4         |
| Clone           | Total | Total | %     | 4-10 oz | >10 oz | <4 oz | Tuber Shape |
| AC00395-2RU     | 453   | 393   | 87    | 283     | 110    | 59    | Ob          |
| CO03187-1RU     | 359   | 322   | 90    | 224     | 98     | 33    | L           |
| CO03202-1RU     | 434   | 385   | 89    | 273     | 112    | 47    | L           |
| CO03276-4RU     | 317   | 267   | 84    | 216     | 51     | 47    | Ob          |
| CO03276-5RU     | 416   | 313   | 75    | 275     | 38     | 103   | L           |
| CO03308-3RU     | 388   | 342   | 88    | 226     | 115    | 45    | L           |
| Canela Russet   | 353   | 328   | 93    | 174     | 154    | 23    | Ob          |
| Russet Norkotah | 323   | 303   | 94    | 118     | 185    | 13    | L           |
| Mean            | 380   | 332   | 88    | 224     | 108    | 46    |             |
| $LSD^{2}(0.05)$ | 57    | 54    | 6     | 57      | 21     | 45    |             |

Tuber shape: Ob=oblong; L=long.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference,

Table 5B. Grade defects for Advanced Yield Trial entries - 2010.

| Clone           | %<br>External<br>Defects | External Defects Observed <sup>2</sup> | %<br>Hollow<br>Heart |
|-----------------|--------------------------|----------------------------------------|----------------------|
| AC00395-2RU     | 0.3                      | GC*, GR*                               | 1.2                  |
| CO03187-1RU     | 0.9                      | MS*, GR                                | 0.0                  |
| CO03202-1RU     | 0.6                      | MS*, GR*                               | 0.0                  |
| CO03276-4RU     | 0.8                      | MS*                                    | 0.0                  |
| CO03276-5RU     | 0.2                      | MS*                                    | 0.0                  |
| CO03308-3RU     | 0.4                      | MS*                                    | 1.6                  |
| Canela Russet   | 0.7                      | MS*, GR*                               | 0.0                  |
| Russet Norkotah | 2.3                      | MS, GR*                                | 0.0                  |
|                 |                          |                                        |                      |

<sup>&</sup>lt;sup>1</sup>Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 5C. Growth characteristics of Advanced Yield Trial entries- 2010.

| Clone                   | %<br>Stand | Emergence<br>Uniformity | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type | Vine<br>Maturity <sup>5</sup> |
|-------------------------|------------|-------------------------|----------------------------|-----------------|---------------------------|--------------|-------------------------------|
| AC00395-2RU             | 100        | 2.8                     | 2.8                        | 1.9             | 4.5                       | 4.0          | 4.0                           |
| CO03187-1RU             | 100        | 2.8                     | 3.0                        | 2.6             | 2.3                       | 3.0          | 1.3                           |
| CO03202-1RU             | 100        | 2.5                     | 3.0                        | 2.0             | 3.5                       | 3.0          | 3.0                           |
| CO03276-4RU             | 92         | 2.8                     | 2.5                        | 3.1             | 2.8                       | 3.0          | 2.0                           |
| CO03276-5RU             | 92         | 3.3                     | 3.0                        | 2.5             | 3.0                       | 3.0          | 2.0                           |
| CO03308-3RU             | 100        | 3.0                     | 3.3                        | 2.1             | 3.0                       | 2.8          | 3.0                           |
| Canela Russet           | 96         | 1.5                     | 2.8                        | 1.4             | 3.5                       | 4.0          | 3.0                           |
| Russet Norkotah         | 100        | 1.8                     | 3.0                        | 2.3             | 2.0                       | 2.8          | 2.0                           |
| Mean                    | 98         | 2.6                     | 2.9                        | 2.2             | 3.1                       | 3.2          | 2.5                           |
| LSD <sup>6</sup> (0.05) | 5          | 0.7                     | 0.5                        | 0.7             | 0.6                       | 0.4          | 0.3                           |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 5D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Advanced Yield Trial entries - 2010.

|                 | Bl      | ackspot Inde | ex <sup>1</sup> | %<br>Weight | Dormancy            | Enzymatic             |
|-----------------|---------|--------------|-----------------|-------------|---------------------|-----------------------|
| Clone           | Bud End | Stem End     | Average         | Loss        | (Days) <sup>3</sup> | Browning <sup>4</sup> |
| AC00395-2RU     | 5.0     | 5.0          | 5.0             | 2.3         | 70                  | 4.8                   |
| CO03187-1RU     | 5.0     | 5.0          | 5.0             | 4.4         | 63                  | 4.8                   |
| CO03202-1RU     | 5.0     | 5.0          | 5.0             | 3.9         | 112                 | 5.0                   |
| CO03276-4RU     | 4.8     | 4.7          | 4.8             | 2.8         | 63                  | 4.6                   |
| CO03276-5RU     | 4.7     | 4.5          | 4.6             | 2.2         | 70                  | 4.8                   |
| CO03308-3RU     | 4.5     | 4.4          | 4.5             | 5.9         | 42                  | 4.8                   |
| Canela Russet   | 4.6     | 5.0          | 4.8             | 3.0         | 133                 | 4.8                   |
| Russet Norkotah | 5.0     | 5.0          | 5.0             | 3.0         | 84                  | 4.4                   |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 5E. Specific gravity, french fry color, and texture for Advanced Yield Trial entries - 2010.

|                 |                  | Fry           | Color                    | Fry '         | Texture <sup>2</sup>    |
|-----------------|------------------|---------------|--------------------------|---------------|-------------------------|
| Clone           | Specific Gravity | At<br>Harvest | 3 wks 55F  <br>9 wks 45F | At<br>Harvest | 3 wks 55F+<br>9 wks 45F |
| AC00395-2RU     | 1.106            | 1             | 2                        | 4             | 4                       |
| CO03187-1RU     | 1.086            | 1             | 2                        | 3             | 3                       |
| CO03202-1RU     | 1.092            | 1             | 2                        | 3             | 3                       |
| CO03276-4RU     | 1.092            | 0             | 0                        | 4             | 4                       |
| CO03276-5RU     | 1.087            | 1             | 1                        | 3             | 3                       |
| CO03308-3RU     | 1.089            | 1             | 2                        | 4             | 4                       |
| Canela Russet   | 1.100            | 1             | 1                        | 5             | 5                       |
| Russet Norkotah | 1.081            | 1             | 1                        | 2             | 3                       |

<sup>&</sup>lt;sup>1</sup>Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of ≤2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 6A. Yield, grade and tuber shape for Advanced Fingerling Yield Trial entries - 2010.

|                         | Total   |     |       |       |     |             |
|-------------------------|---------|-----|-------|-------|-----|-------------|
| Clone                   | (Cwt/A) | <2" | <2-4" | >4-6" | >6" | Tuber Shape |
| CO00405-1RF             | 367     | 65  | 194   | 99    | 8   | L           |
| CO00415-1RF             | 431     | 72  | 255   | 77    | 22  | L           |
| CO03134-4RF/RW          | 285     | 45  | 180   | 46    | 4   | L           |
| Banana                  | 362     | 36  | 212   | 89    | 5   | L           |
| Mean                    | 361     | 55  | 210   | 78    | 10  |             |
| LSD <sup>2</sup> (0.05) | 60      | 31  | 45    | 39    | NS  | 2#R###3     |

<sup>&</sup>lt;sup>1</sup>Tuber shape: L=long.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference; NS=not significant.

Table 6B. Grade defects for Advanced Fingerling Yield Trial entries - 2010.

| Clone          | %<br>External<br>Defects | External<br>Defects Observed <sup>2</sup> | %<br>Hollow<br>Heart <sup>3</sup> |
|----------------|--------------------------|-------------------------------------------|-----------------------------------|
| CO00405-1RF    | 0.0                      |                                           | 0.0                               |
| CO00415-1RF    | 1.1                      | MS*                                       | 0.0                               |
| CO03134-4RF/RW | 2.4                      | MS*                                       | 0.0                               |
| Banana         | 5.4                      | MS*, GR                                   | 0.0                               |

<sup>&</sup>lt;sup>1</sup>Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 6C. Growth characteristics of Advanced Fingerling Yield Trial entries - 2010.

| Clone                   | %<br>Stand | Emergence<br>Uniformity <sup>1</sup> | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type | Vine<br>Maturity <sup>5</sup> |
|-------------------------|------------|--------------------------------------|----------------------------|-----------------|---------------------------|--------------|-------------------------------|
| CO00405-1RF             | 99         | 2.8                                  | 3.0                        | 3.6             | 2.3                       | 2.0          | 2.0                           |
| CO00415-1RF             | 98         | 3.0                                  | 3.0                        | 3.2             | 2.5                       | 2.3          | 1.8                           |
| CO03134-4RF/RW          | 100        | 3.0                                  | 3.5                        | 4.7             | 4.0                       | 3.0          | 3.5                           |
| Banana                  | 99         | 3.5                                  | 3.3                        | 4.4             | 5.0                       | 3.0          | 3.0                           |
| Mean                    | 99         | 3.1                                  | 3.2                        | 4.0             | 3.5                       | 2.6          | 2.6                           |
| LSD <sup>6</sup> (0.05) | NS         | 0.5                                  | 1.0                        | NS              | 0.5                       | 0.4          | 0.9                           |
|                         |            |                                      |                            |                 |                           |              |                               |

<sup>&</sup>lt;sup>1</sup> Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference; NS=not significant.

Table 6D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Advanced Fingerling Yield Trial entries - 2010.

|                                                        | Blackspot Index 1     |                       |                   | %<br>Weight              | Dormancy             | Enzymatic             |
|--------------------------------------------------------|-----------------------|-----------------------|-------------------|--------------------------|----------------------|-----------------------|
| Clone                                                  | Bud End               | Stem End              | Average           | Loss <sup>2</sup>        | (Days) <sup>3</sup>  | Browning <sup>4</sup> |
| CO00405-1RF<br>CO00415-1RF<br>CO03134-4RF/RW<br>Banana | 5.0<br>5.0<br><br>5.0 | 5.0<br>5.0<br><br>5.0 | 5.0<br>5.0<br>5.0 | 4.8<br>3.0<br>5.2<br>3.5 | 63<br>70<br>77<br>70 | 3.8<br>4.8<br><br>4.6 |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 6E. Specific gravity, french fry color, and texture for Advanced Fingerling Yield Trial entries - 2010.

|                                         |                         | Fry           | Color                   | Fry Texture <sup>2</sup> |                         |  |
|-----------------------------------------|-------------------------|---------------|-------------------------|--------------------------|-------------------------|--|
| Clone                                   | Specific Gravity        | At<br>Harvest | 3 wks 55F+<br>9 wks 45F | At<br>Harvest            | 3 wks 55F+<br>9 wks 45F |  |
| CO00405-1RF<br>CO00415-1RF              | 1.081                   | 1             | 1 2                     | 3                        | 3                       |  |
| CO00415-1RF<br>CO03134-4RF/RW<br>Banana | 1.080<br>1.096<br>1.103 | 1<br>0        | 3<br>2<br>1             | 1<br>4<br>4              | 5<br>5                  |  |

Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 7A . Yield, grade and tuber shape for Southwest Regional Russet Trial entries - 2010.

|                         | Yield (Cwt/A) |       |    |         |        |       |               |
|-------------------------|---------------|-------|----|---------|--------|-------|---------------|
|                         | US #1         |       |    |         |        |       | =             |
| Clone                   | Total         | Total | %  | 4-10 oz | >10 oz | <4 oz | Tuber Shape 1 |
| AOTX96084-1RU           | 516           | 470   | 91 | 179     | 291    | 29    | L             |
| AOTX98152-3RU           | 557           | 465   | 84 | 274     | 190    | 58    | Ob            |
| ATX9332-12RU            | 524           | 486   | 93 | 182     | 305    | 16    | L             |
| Canela Russet           | 395           | 368   | 93 | 207     | 162    | 26    | Ob            |
| Russet Norkotah         | 402           | 369   | 92 | 179     | 191    | 25    | L             |
| Mean                    | 479           | 432   | 91 | 204     | 228    | 31    |               |
| LSD <sup>2</sup> (0.05) | 73            | 69    | 4  | 55      | 86     | 9     |               |

<sup>&</sup>lt;sup>1</sup>Tuber shape: Ob=oblong; L=long.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 7B. Grade defects for Southwest Regional Russet Trial entries - 2010.

|                 | %<br>External |                               | %<br>Hollow        |
|-----------------|---------------|-------------------------------|--------------------|
| Clone           | Defects       | Defects Observed <sup>2</sup> | Heart <sup>3</sup> |
| AOTX96084-1RU   | 3.4           | MS*, GC, GR                   | 0.0                |
| AOTX98152-3RU   | 6.1           | MS, GC, GR*                   | 0.8                |
| ATX9332-12RU    | 4.2           | GR*                           | 0.0                |
| Canela Russet   | 0.3           | GR*                           | 0.0                |
| Russet Norkotah | 2.0           | MS, GR*                       | 0.8                |

Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 7C. Growth characteristics of Southwest Regional Russet Trial entries - 2010.

| Clone           | %<br>Stand | Emergence<br>Uniformity | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type | Vine<br>Maturity <sup>5</sup> |
|-----------------|------------|-------------------------|----------------------------|-----------------|---------------------------|--------------|-------------------------------|
| AOTX96084-1RU   | 100        | 4.0                     | 3.0                        | 2.8             | 3.0                       | 2.8          | 2.0                           |
| AOTX98152-3RU   | 100        | 4.5                     | 3.5                        | 3.4             | 3.0                       | 2.3          | 2.5                           |
| ATX9332-12RU    | 99         | 4.0                     | 3.0                        | 2.9             | 3.8                       | 3.0          | 3.0                           |
| Canela Russet   | 98         | 2.3                     | 2.5                        | 1.3             | 4.0                       | 3.3          | 3.5                           |
| Russet Norkotah | 100        | 2.8                     | 3.0                        | 2.5             | 2.3                       | 2.5          | 2.3                           |
| Mean            | 99         | 3.5                     | 3.0                        | 2.6             | 3.2                       | 2.8          | 2.7                           |
| LSD6 (0.05)     | 2          | 0.5                     | 0.6                        | 1.1             | 0.5                       | 0.7          | 0.6                           |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 7D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Southwest Regional Russet Trial entries - 2010.

|                 | Ві      | ackspot Ind | ex 1    | %<br>Weight       | Dormancy | Enzymatic             |
|-----------------|---------|-------------|---------|-------------------|----------|-----------------------|
| Clone           | Bud End | Stem End    | Average | Loss <sup>2</sup> | (Days)3  | Browning <sup>4</sup> |
| AOTX96084-1RU   | 5.0     | 5.0         | 5.0     | 3.1               | 84       | 4.0                   |
| AOTX98152-3RU   | 4.8     | 4.5         | 4.7     | 2.7               | 49       | 2.4                   |
| ATX9332-12RU    | 2.5     | 3.6         | 3.1     | 3.2               | 70       | 3.6                   |
| Canela Russet   | 5.0     | 4.7         | 4.9     | 3.5               | 133      | 4.8                   |
| Russet Norkotah | 5.0     | 5.0         | 5.0     | 3.1               | 70       | 4.4                   |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 7E. Specific gravity, french fry color, and texture for Southwest Regional Russet Trial entries - 2010.

|                 |                  | Fry           | Color                   | Fry           | Texture <sup>2</sup>    |
|-----------------|------------------|---------------|-------------------------|---------------|-------------------------|
| Clone           | Specific Gravity | At<br>Harvest | 3 wks 55F+<br>9 wks 45F | At<br>Harvest | 3 wks 55F+<br>9 wks 45F |
| AOTX96084-1RU   | 1.082            | 1             | 1                       | 3             | 3                       |
| AOTX98152-3RU   | 1.092            | 0             | 0                       | 3             | 3                       |
| ATX9332-12RU    | 1.103            | 1             | 1                       | 3             | 2                       |
| Canela Russet   | 1.105            | 1             | 1                       | 5             | 5                       |
| Russet Norkotah | 1.081            | 1             | 1                       | 2             | 3                       |

Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 8A . Yield, grade and tuber shape for Southwest Regional Red Trial entries - 2010.

|                         | W     | Yield (Cwt/A) |          |                  |          |       |             |  |
|-------------------------|-------|---------------|----------|------------------|----------|-------|-------------|--|
| Clone                   | Total | Total         | <u>(</u> | JS #1<br>4-10 oz | 2 >10 oz | <4.07 | Tuber Shape |  |
|                         | 1000  | 10141         |          | 1 10 02          | 10 02    | -1 OZ | Tabel Shape |  |
| AOTX91861-4R            | 484   | 453           | 94       | 221              | 231      | 29    | R           |  |
| ATTX98453-11BR          | 338   | 244           | 73       | 184              | 60       | 89    | Ov          |  |
| NDTX5003-2R             | 408   | 331           | 81       | 256              | 75       | 67    | R           |  |
| NDTX5438-11R            | 511   | 436           | 86       | 333              | 104      | 72    | R           |  |
| Norland (Dark Red)      | 466   | 422           | 91       | 264              | 159      | 41    | Ov          |  |
| Red LaSoda              | 617   | 539           | 87       | 251              | 288      | 32    | Ov          |  |
| Sangre-S10              | 518   | 468           | 90       | 223              | 245      | 37    | Ov          |  |
| Mean                    | 477   | 413           | 86       | 247              | 166      | 52    |             |  |
| LSD <sup>2</sup> (0.05) | 43    | 50            | 6        | 51               | 62       | 19    |             |  |

<sup>&</sup>lt;sup>1</sup>Tuber shape: R=round; Ov=oval.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 8B. Grade defects for Southwest Regional Red Trial entries - 2010.

| Clone              | %<br>External<br>Defects | External Defects Observed | %<br>Hollow<br>Heart |
|--------------------|--------------------------|---------------------------|----------------------|
| AOTX91861-4R       | 0.4                      | GC*                       | 0.0                  |
| ATTX98453-11BR     | 1.3                      | GC*                       | 0.0                  |
| NDTX5003-2R        | 2.8                      | MS, GC*                   | 0.3                  |
| NDTX5438-11R       | 0.5                      | MS*, GC*                  | 0.0                  |
| Norland (Dark Red) | 0.6                      | MS*, GC*                  | 0.0                  |
| Red LaSoda         | 1.0                      | MS, GC*, GR               | 15.9                 |
| Sangre-S10         | 2.7                      | GC*, GR                   | 0.7                  |
|                    |                          |                           |                      |

Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 8C. Growth characteristics of Southwest Regional Red Trial entries - 2010.

| Clone              | %<br>Stand | Emergence<br>Uniformity <sup>1</sup> | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type <sup>4</sup> | Vine<br>Maturity <sup>5</sup> |
|--------------------|------------|--------------------------------------|----------------------------|-----------------|---------------------------|---------------------------|-------------------------------|
| AOTX91861-4R       | 100        | 3.3                                  | 3.3                        | 2.2             | 2.3                       | 2.0                       | 1.8                           |
| ATTX98453-11BR     | 100        | 3.0                                  | 3.0                        | 3.5             | 2.5                       | 2.5                       | 2.0                           |
| NDTX5003-2R        | 100        | 3.0                                  | 3.0                        | 2.5             | 3.0                       | 2.8                       | 1.8                           |
| NDTX5438-11R       | 100        | 3.5                                  | 2.8                        | 2.5             | 3.5                       | 3.0                       | 2.8                           |
| Norland (Dark Red) | 96         | 3.5                                  | 3.0                        | 2.8             | 2.3                       | 2.0                       | 1.5                           |
| Red LaSoda         | 96         | 4.0                                  | 3.5                        | 2.6             | 4.3                       | 3.0                       | 3.0                           |
| Sangre-S10         | 96         | 2.5                                  | 2.5                        | 2.2             | 4.3                       | 3.0                       | 3.3                           |
| Mean               | 98         | 3.3                                  | 3.0                        | 2.6             | 3.2                       | 2.6                       | 2.3                           |
| LSD6 (0.05)        | 4          | 0.7                                  | 0.6                        | 1.0             | 0.8                       | 0.4                       | 0.6                           |
|                    |            |                                      |                            |                 |                           |                           |                               |

Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 8D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Southwest Regional Red Trial entries - 2010.

|                    | Bl      | ackspot Ind | ex <sup>1</sup> | %<br>Weight       | Dormancy            | Enzymatic             |
|--------------------|---------|-------------|-----------------|-------------------|---------------------|-----------------------|
| Clone              | Bud End | Stem End    | Average         | Loss <sup>2</sup> | (Days) <sup>3</sup> | Browning <sup>4</sup> |
| AOTX91861-4R       | 4.4     | 4.3         | 4.3             | 5.7               | 84                  | 1.6                   |
| ATTX98453-11BR     | 4.8     | 4.6         | 4.7             | 6.1               | 112                 | 4.0                   |
| NDTX5003-2R        | 4.7     | 4.3         | 4.5             | 11.8              | 42                  | 1.4                   |
| NDTX5438-11R       | 4.7     | 4.0         | 4.4             | 6.6               | 70                  | 2.2                   |
| Norland (Dark Red) | 4.5     | 4.8         | 4.7             | 7.5               | 42                  | 3.8                   |
| Red LaSoda         | 4.4     | 4.7         | 4.6             | 1.9               | 63                  | 3.2                   |
| Sangre-S10         | 4.9     | 5.0         | 5.0             | 3.8               | 70                  | 2.4                   |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 8E. Specific gravity, french fry color, and texture for Southwest Regional Red Trial entries - 2010.

|                    |                     | Fry           | Color                   | Fry <sup>^</sup> | Fry Texture <sup>2</sup> |  |  |  |
|--------------------|---------------------|---------------|-------------------------|------------------|--------------------------|--|--|--|
| Clone              | Specific<br>Gravity | At<br>Harvest | 3 wks 55F+<br>9 wks 45F | At<br>Harvest    | 3 wks 55F+<br>9 wks 45F  |  |  |  |
| AOTX91861-4R       | 1.072               | 1             | 2                       | 1                | 1                        |  |  |  |
| ATTX98453-11BR     | 1.085               | 3             | 3                       | 2                | 2                        |  |  |  |
| NDTX5003-2R        | 1.087               | 3             | 2                       | 2                | 2                        |  |  |  |
| NDTX5438-11R       | 1.071               | 1             | 3                       | 3                | 2                        |  |  |  |
| Norland (Dark Red) | 1.071               | 1             | 2                       | 1                | 2                        |  |  |  |
| Red LaSoda         | 1.084               | 4             | 4                       | 2                | 2                        |  |  |  |
| Sangre-S10         | 1.083               | 1             | 2                       | 3                | 2                        |  |  |  |

<sup>&</sup>lt;sup>1</sup> Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 9A . Yield, grade and tuber shape for Southwest Regional Specialty Trial entries - 2010.

|                         |       |       | J  | JS #1   |        |       |               |
|-------------------------|-------|-------|----|---------|--------|-------|---------------|
| Clone                   | Total | Total | %  | 4-10 oz | >10 oz | <4 oz | Tuber Shape 1 |
| ATTX88654-2P/Y          | 576   | 510   | 89 | 228     | 283    | 53    | Ov            |
| ATTX98510-1R/Y          | 628   | 538   | 86 | 353     | 185    | 84    | Ov            |
| ATTX01180-1R/Y          | 451   | 309   | 69 | 272     | 37     | 135   | Ob            |
| BTX2103-1R/Y            | 532   | 463   | 87 | 328     | 135    | 53    | R             |
| CO01399-10P/Y           | 546   | 438   | 80 | 330     | 109    | 103   | Ov            |
| COTX01403-4R/Y          | 468   | 401   | 85 | 276     | 125    | 54    | Ov            |
| TC02072-3P/P            | 440   | 141   | 32 | 141     | 0      | 299   | L             |
| TX1674-1W/Y             | 345   | 298   | 87 | 228     | 70     | 44    | Ob            |
| Purple Majesty          | 528   | 276   | 52 | 240     | 36     | 248   | Ov            |
| Yukon Gold              | 439   | 402   | 92 | 186     | 216    | 33    | Ov            |
| Mean                    | 495   | 378   | 76 | 258     | 120    | 111   |               |
| LSD <sup>2</sup> (0.05) | 59    | 58    | 5  | 48      | 47     | 28    |               |

<sup>&</sup>lt;sup>1</sup>Tuber shape: R=round; Ov=oval; Ob=oblong; L=long.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 9B. Grade defects for Southwest Regional Specialty Trial entries - 2010.

| Clone          | %<br>External<br>Defects | External Defects Observed <sup>2</sup> | %<br>Hollow<br>Heart |
|----------------|--------------------------|----------------------------------------|----------------------|
| ATTX88654-2P/Y | 2.3                      | MS, GC, GR*                            | 22.5                 |
| ATTX98510-1R/Y | 0.9                      | MS, GC, GR*                            | 12.9                 |
| ATTX01180-1R/Y | 1.6                      | GC*, GR*                               | 0.0                  |
| BTX2103-1R/Y   | 2.8                      | GC*, GR                                | 0.0                  |
| CO01399-10P/Y  | 1.0                      | MS, GC*                                | 0.0                  |
| COTX01403-4R/Y | 2.9                      | MS, GC*, GR                            | 0.5                  |
| TC02072-3P/P   | 0.0                      |                                        | 0.0                  |
| TX1674-1W/Y    | 0.7                      | MS*, GR                                | 0.0                  |
| Purple Majesty | 0.9                      | MS*, GR                                | 0.2                  |
| Yukon Gold     | 0.9                      | GR*                                    | 0.4                  |

Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 9C. Growth characteristics of Southwest Regional Specialty Trial entries - 2010.

| Clone                         | %<br>Stand | Emergence<br>Uniformity | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type | Vine<br>Maturity <sup>5</sup> |
|-------------------------------|------------|-------------------------|----------------------------|-----------------|---------------------------|--------------|-------------------------------|
| ATTX88654-2P/Y                | 96         | 4.0                     | 3.0                        | 2.7             | 4.0                       | 3.8          | 3.0                           |
| ATTX98510-1R/Y                | 96         | 4.0                     | 3.0                        | 3.6             | 3.8                       | 3.0          | 2.3                           |
| ATTX01180-1R/Y                | 96         | 3.3                     | 2.8                        | 3.4             | 3.5                       | 2.5          | 2.0                           |
| BTX2103-1R/Y<br>CO01399-10P/Y | 96<br>100  | 4.0                     | 3.5<br>3.0                 | 2.8<br>2.4      | 3.3<br>4.3                | 2.3<br>3.0   | 2.0<br>3.3                    |
| COTX01403-4R/Y                | 96         | 3.5                     | 2.8                        | 2.9             | 3.0                       | 3.0          | 2.0                           |
| TC02072-3P/P                  | 100        | 3.3                     | 2.8                        | 4.0             | 3.3                       | 2.5          | 1.8                           |
| TX1674-1W/Y                   | 100        | 3.0                     | 3.0                        | 2.4             | 2.5                       | 3.0          | 3.0                           |
| Purple Majesty                | 100        | 4.0                     | 3.0                        | 4.1             | 3.3                       | 3.0          | 2.3                           |
| Yukon Gold                    | 96         | 3.8                     | 3.0                        | 1.8             | 3.3                       | 3.0          | 2.0                           |
| Mean                          | 98         | 3.6                     | 3.0                        | 3.0             | 3.4                       | 2.9          | 2.4                           |
| LSD6 (0.05)                   | 4          | 0.5                     | 0.5                        | 1.2             | 0.7                       | 0.5          | 0.4                           |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 9D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Southwest Regional Specialty Trial entries - 2010.

| Dud End |                                            | ex                                                             | Weight<br>Loss                                                                                                                                                                                                          | Dormancy                                                                                                                                                                                                                                                              | Enzymatic<br>Browning                                                                                                                                                                                                                                                                                                                         |
|---------|--------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dua Ena | Stem End                                   | Average                                                        |                                                                                                                                                                                                                         | (Days) <sup>3</sup>                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                               |
| 4.7     | 4.4                                        | 4.6                                                            | 4.2                                                                                                                                                                                                                     | 84                                                                                                                                                                                                                                                                    | 4.2                                                                                                                                                                                                                                                                                                                                           |
| 4.6     | 3.9                                        | 4.3                                                            | 3.9                                                                                                                                                                                                                     | 49                                                                                                                                                                                                                                                                    | 1.8                                                                                                                                                                                                                                                                                                                                           |
| 3.3     | 3.9                                        | 3.6                                                            | 4.0                                                                                                                                                                                                                     | 70                                                                                                                                                                                                                                                                    | 4.0                                                                                                                                                                                                                                                                                                                                           |
| 3.8     | 3.2                                        | 3.5                                                            | 3.7                                                                                                                                                                                                                     | 84                                                                                                                                                                                                                                                                    | 1.8                                                                                                                                                                                                                                                                                                                                           |
| 5.0     | 5.0                                        | 5.0                                                            | 3.0                                                                                                                                                                                                                     | 70                                                                                                                                                                                                                                                                    | 3.2                                                                                                                                                                                                                                                                                                                                           |
| 4.7     | 4.1                                        | 4.4                                                            | 4.0                                                                                                                                                                                                                     | 42                                                                                                                                                                                                                                                                    | 4.6                                                                                                                                                                                                                                                                                                                                           |
|         |                                            |                                                                | 12.1                                                                                                                                                                                                                    | 70                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                               |
| 5.0     | 5.0                                        | 5.0                                                            | 3.2                                                                                                                                                                                                                     | 70                                                                                                                                                                                                                                                                    | 3.8                                                                                                                                                                                                                                                                                                                                           |
| -       |                                            | (6966)                                                         | 5.6                                                                                                                                                                                                                     | 49                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                             |
| 5.0     | 5.0                                        | 5.0                                                            | 1.9                                                                                                                                                                                                                     | 63                                                                                                                                                                                                                                                                    | 4.4                                                                                                                                                                                                                                                                                                                                           |
|         | 4.6<br>3.3<br>3.8<br>5.0<br>4.7<br><br>5.0 | 4.6 3.9<br>3.3 3.9<br>3.8 3.2<br>5.0 5.0<br>4.7 4.1<br>5.0 5.0 | 4.6       3.9       4.3         3.3       3.9       3.6         3.8       3.2       3.5         5.0       5.0       5.0         4.7       4.1       4.4         5.0       5.0       5.0         5.0       5.0       5.0 | 4.6       3.9       4.3       3.9         3.3       3.9       3.6       4.0         3.8       3.2       3.5       3.7         5.0       5.0       5.0       3.0         4.7       4.1       4.4       4.0           12.1         5.0       5.0       3.2          5.6 | 4.6       3.9       4.3       3.9       49         3.3       3.9       3.6       4.0       70         3.8       3.2       3.5       3.7       84         5.0       5.0       5.0       3.0       70         4.7       4.1       4.4       4.0       42           12.1       70         5.0       5.0       3.2       70          5.6       49 |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 9E. Specific gravity, french fry color, and texture for Southwest Regional Specialty Trial entries - 2010.

|                |                  | Fry           | Color                   | Fry Texture <sup>2</sup> |                         |  |
|----------------|------------------|---------------|-------------------------|--------------------------|-------------------------|--|
| Clone          | Specific Gravity | At<br>Harvest | 3 wks 55F+<br>9 wks 45F | At<br>Harvest            | 3 wks 55F+<br>9 wks 45F |  |
| ATTX88654-2P/Y | 1.085            | 2             | 2                       | 3                        | 2                       |  |
| ATTX98510-1R/Y | 1.083            | 1             | 1                       | 3                        | 3                       |  |
| ATTX01180-1R/Y | 1.084            | 3             | 3                       | 3                        | 3                       |  |
| BTX2103-1R/Y   | 1.085            | 1             | 1                       | 3                        | 2.                      |  |
| CO01399-10P/Y  | 1.085            | 1             | 0                       | 3                        | 4                       |  |
| COTX01403-4R/Y | 1.071            | 2             | 3                       | 2                        | 2                       |  |
| TC02072-3P/P   | 1.088            |               |                         | 2                        | 3                       |  |
| TX1674-1W/Y    | 1.095            | 1             | 1                       | 4                        | 3                       |  |
| Purple Majesty | 1.093            |               |                         | 3                        | 3                       |  |
| Yukon Gold     | 1.089            | 1             | 3                       | 4                        | 4                       |  |

<sup>&</sup>lt;sup>1</sup> Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 10A. Yield, grade and tuber shape for Western Regional Main Trial entries - 2010.

|                         |       |       | J  | JS #1   |        |       | i i               |
|-------------------------|-------|-------|----|---------|--------|-------|-------------------|
| Clone                   | Total | Total | %  | 4-10 oz | >10 oz | <4 oz | Tuber Shape L     |
| A97066-42LB             | 370   | 292   | 79 | 230     | 62     | 73    | Ob                |
| A98345-1                | 544   | 504   | 93 | 280     | 224    | 37    | Ob                |
| A0008-1TE               | 397   | 353   | 89 | 236     | 117    | 31    | Ob                |
| A00324-1                | 504   | 454   | 90 | 226     | 228    | 26    | Ob                |
| A01010-1                | 489   | 434   | 88 | 315     | 119    | 47    | Ob                |
| AC99375-1RU             | 435   | 378   | 87 | 287     | 91     | 56    | Ob                |
| AO96305-3               | 426   | 382   | 90 | 230     | 153    | 35    | L                 |
| AO00057-2               | 388   | 340   | 88 | 189     | 151    | 44    | Ob                |
| AOTX95265-1RU           | 474   | 444   | 94 | 183     | 261    | 22    | Ob                |
| AOTX96216-2RU           | 399   | 222   | 56 | 43      | 180    | 7     | Ob                |
| AOTX96265-2RU           | 437   | 407   | 93 | 243     | 164    | 23    | Ob                |
| CO98067-7RU             | 475   | 426   | 90 | 298     | 128    | 47    | L                 |
| CO99053-3RU             | 474   | 432   | 91 | 133     | 299    | 26    | Ob                |
| CO99053-4RU             | 365   | 329   | 90 | 234     | 95     | 30    | Ob                |
| CO99100-1RU             | 329   | 297   | 91 | 199     | 99     | 25    | Ob                |
| PA99N2-1                | 427   | 353   | 83 | 207     | 146    | 36    | Ob                |
| PA99N82-4               | 407   | 351   | 86 | 231     | 121    | 38    | Ob                |
| PA00N14-2               | 452   | 330   | 73 | 317     | 13     | 122   | L                 |
| Canela Russet           | 312   | 280   | 90 | 187     | 93     | 32    | Ob                |
| Ranger Russet           | 470   | 425   | 91 | 237     | 189    | 35    | L                 |
| Russet Burbank          | 490   | 369   | 76 | 247     | 122    | 84    | L                 |
| Russet Norkotah         | 382   | 351   | 92 | 161     | 189    | 16    | L                 |
| Mean                    | 429   | 3,71  | 86 | 223     | 147    | 41    |                   |
| LSD <sup>2</sup> (0.05) | 51    | 51    | 5  | 40      | 60     | 19    | and the second of |

<sup>&</sup>lt;sup>1</sup>Tuber shape: Ob=oblong; L=long.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 10B. Grade defects for Western Regional Main Trial entries - 2010.

| Clone           | %<br>External<br>Defects | External Defects Observed <sup>2</sup> | %<br>Hollow<br>Heart |
|-----------------|--------------------------|----------------------------------------|----------------------|
| A97066-42LB     | 1.1                      | MS, GC, GR*                            | 0.0                  |
| A98345-1        | 0.5                      | MS*, GC, GR                            | 0.0                  |
| A0008-1TE       | 3.1                      | MS, GC*, GR                            | 0.0                  |
| A00324-1        | 4.9                      | MS*, GR                                | 0.0                  |
| A01010-1        | 1.6                      | MS*, GC                                | 0.0                  |
| AC99375-1RU     | 0.3                      | MS*, GR*                               | 0.0                  |
| AO96305-3       | 2.3                      | MS*, GC, GR                            | 0.0                  |
| AO00057-2       | 0.8                      | MS*, GR*                               | 0.6                  |
| AOTX95265-1RU   | 1.7                      | MS*, SG, GR*                           | 0.6                  |
| AOTX96216-2RU   | 42.1                     | GC*                                    | 0.0                  |
| AOTX96265-2RU   | 1.5                      | MS*, GR                                | 0.4                  |
| CO98067-7RU     | 0.7                      | MS*                                    | 0.0                  |
| CO99053-3RU     | 3.5                      | MS*, GR                                | 0.5                  |
| CO99053-4RU     | 1.5                      | MS*, GC, GR                            | 0.0                  |
| CO99100-1RU     | 2.0                      | GC*                                    | 0.0                  |
| PA99N2-1        | 8.7                      | MS, SG*, GC*, GR                       | 0.6                  |
| PA99N82-4       | 4.4                      | MS*, GC, GR                            | 0.0                  |
| PA00N14-2       | 0.1                      | GR*                                    | 0.0                  |
| Canela Russet   | 0.0                      |                                        | 0.0                  |
| Ranger Russet   | 2.2                      | MS, SG, GC, GR*                        | 0.0                  |
| Russet Burbank  | 7.4                      | MS, SG*, GC, GR                        | 5.7                  |
| Russet Norkotah | 4.1                      | MS*, SG, GC, GR*                       | 0.0                  |

<sup>&</sup>lt;sup>1</sup>Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 10C. Growth characteristics of Western Regional Main Trial entries - 2010.

| Clone                   | %<br>Stand | Emergence<br>Uniformity <sup>1</sup> | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type <sup>4</sup> | Vine<br>Maturity <sup>5</sup> |
|-------------------------|------------|--------------------------------------|----------------------------|-----------------|---------------------------|---------------------------|-------------------------------|
| A97066-42LB             | 100        | 2.8                                  | 2.3                        | 1.7             | 4.3                       | 3.3                       | 3.0                           |
| A98345-1                | 100        | 4.0                                  | 3.3                        | 2.2             | 3.5                       | 2.0                       | 3.0                           |
| A0008-1TE               | 100        | 3.3                                  | 3.0                        | 3.3             | 2.8                       | 2.5                       | 2.5                           |
| A00324-1                | 100        | 3.8                                  | 3.0                        | 2.4             | 3.8                       | 2.8                       | 3.0                           |
| A01010-1                | 100        | 4.0                                  | 3.5                        | 3.0             | 4.3                       | 3.5                       | 3.0                           |
| AC99375-1RU             | 100        | 4.3                                  | 3.3                        | 2.5             | 5.0                       | 3.5                       | 3.0                           |
| AO96305-3               | 100        | 3.5                                  | 3.3                        | 3.1             | 3.0                       | 2.3                       | 3.0                           |
| AO00057-2               | 100        | 3.5                                  | 3.0                        | 2.7             | 3.3                       | 2.8                       | 3.0                           |
| AOTX95265-1RU           | 100        | 3.8                                  | 3.0                        | 2.8             | 3.8                       | 2.5                       | 2.8                           |
| AOTX96216-2RU           | 96         | 3.3                                  | 2.8                        | 1.4             | 4.0                       | 3.5                       | 3.3                           |
| AOTX96265-2RU           | 100        | 4.0                                  | 3.3                        | 2.9             | 4.3                       | 2.8                       | 2.8                           |
| CO98067-7RU             | 96         | 4.0                                  | 3.0                        | 2.9             | 3.8                       | 2.8                       | 3.0                           |
| CO99053-3RU             | 100        | 4.0                                  | 2.8                        | 2.5             | 3.8                       | 2.8                       | 3.0                           |
| CO99053-4RU             | 96         | 3.0                                  | 3.0                        | 2.9             | 2.8                       | 3.0                       | 2.3                           |
| CO99100-1RU             | 96         | 3.3                                  | 2.8                        | 2.6             | 2.3                       | 2.3                       | 1.5                           |
| PA99N2-1                | 100        | 3.5                                  | 2.5                        | 2.7             | 3.8                       | 3.0                       | 3.0                           |
| PA99N82-4               | 100        | 3.3                                  | 3.3                        | 3.0             | 3.8                       | 3.0                       | 2.5                           |
| PA00N14-2               | 100        | 3.5                                  | 3.3                        | 3.0             | 3.8                       | 3.0                       | 1.8                           |
| Canela Russet           | 92         | 2.0                                  | 2.5                        | 1.5             | 4.0                       | 3.5                       | 3.0                           |
| Ranger Russet           | 100        | 3.3                                  | 3.5                        | 2.4             | 3.0                       | 2.8                       | 3.3                           |
| Russet Burbank          | 100        | 4.0                                  | 3.5                        | 2.5             | 3.5                       | 2.5                       | 2.5                           |
| Russet Norkotah         | 100        | 3.0                                  | 2.8                        | 2.5             | 2.5                       | 2.0                       | 2.3                           |
| Mean                    | 99         | 3.5                                  | 3.0                        | 2.6             | 3.6                       | 2.8                       | 2.8                           |
| LSD <sup>6</sup> (0.05) | 3          | 0.7                                  | 0.7                        | 0.7             | 0.8                       | 0.7                       | 0.6                           |
|                         |            |                                      |                            |                 |                           |                           |                               |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 10D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Western Regional Main Trial entries - 2010.

|                 | ВІ      | ackspot Inde | 1<br>×x | %<br>Weight | Dormancy | Enzymatic             |
|-----------------|---------|--------------|---------|-------------|----------|-----------------------|
| Clone           | Bud End | Stem End     | Average | Loss        | (Days)37 | Browning <sup>4</sup> |
| A97066-42LB     | 4.9     | 4.7          | 4.8     | 3.6         | 70       | 3.2                   |
| A98345-1        | 4.7     | 4.1          | 4.4     | 6.4         | 42       | 2.2                   |
| A0008-1TE       | 5.0     | 5.0          | 5.0     | 2.9         | 70       | 4.6                   |
| A00324-1        | 5.0     | 4.6          | 4.8     | 3.2         | 56       | 3.6                   |
| A01010-1        | 5.0     | 5.0          | 5.0     | 2.9         | 70       | 4.2                   |
| AC99375-1RU     | 5.0     | 5.0          | 5.0     | 2.8         | 84       | 1.4                   |
| AO96305-3       | 5.0     | 5.0          | 5.0     | 2.1         | 126      | 4.4                   |
| AO00057-2       | 5.0     | 5.0          | 5.0     | 3.0         | 70       | 4.4                   |
| AOTX95265-1RU   | 5.0     | 5.0          | 5.0     | 3.3         | 98       | 3.2                   |
| AOTX96216-2RU   | 5.0     | 5.0          | 5.0     | 3.3         | 84       | 2.8                   |
| AOTX96265-2RU   | 4.6     | 4.1          | 4.4     | 3.6         | 63       | 1.6                   |
| CO98067-7RU     | 5.0     | 5.0          | 5.0     | 4.6         | 63       | 5.0                   |
| CO99053-3RU     | 5.0     | 5.0          | 5.0     | 7.6         | 63       | 4.0                   |
| CO99053-4RU     | 5.0     | 5.0          | 5.0     | 3.9         | 49       | 4.8                   |
| CO99100-1RU     | 5.0     | 5.0          | 5.0     | 5.7         | 49       | 3.8                   |
| PA99N2-1        | 5.0     | 4.6          | 4.8     | 2.2         | 84       | 2.6                   |
| PA99N82-4       | 5.0     | 4.6          | 4.8     | 3.0         | 70       | 3.8                   |
| PA00N14-2       | 5.0     | 5.0          | 5.0     | 3.5         | 98       | 3.4                   |
| Canela Russet   | 4.8     | 4.7          | 4.8     | 3.0         | 112      | 4.2                   |
| Ranger Russet   | 4.7     | 3.4          | 4.1     | 2.9         | 63       | 3.6                   |
| Russet Burbank  | 5.0     | 4.2          | 4.6     | 1.9         | 119      | 2.6                   |
| Russet Norkotah | 5.0     | 5.0          | 5.0     | 3.3         | 70       | 3.6                   |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 10E. Specific gravity, french fry color, and texture for Western Regional Main Trial entries - 2010.

|                 |          | Fry     | Color      | Fry     | Γexture <sup>2</sup> |
|-----------------|----------|---------|------------|---------|----------------------|
|                 | Specific | At      | 3 wks 55F+ | At      | 3 wks 55F+           |
| Clone           | Gravity  | Harvest | 9 wks 45F  | Harvest | 9 wks 45F            |
| A97066-42LB     | 1.105    | 0       | 1          | 5       | 5                    |
| A98345-1        | 1.098    | 0       | 1          | 4       | 3                    |
| A0008-1TE       | 1.087    | 1       | 2          | 4       | 3                    |
| A00324-1        | 1.089    | 1       | 0          | 3       | 4                    |
| A01010-1        | 1.092    | 0       | 1          | 5       | 4                    |
| AC99375-1RU     | 1.090    | 0       | 0          | 4       | 5                    |
| AO96305-3       | 1.089    | 0       | 0          | 4       | 5                    |
| AO00057-2       | 1.113    | 0       | 1          | 3       | 4                    |
| AOTX95265-1RU   | 1.085    | 1       | 2          | 3       | 4                    |
| AOTX96216-2RU   | 1.091    | 2       | 2          | 4       | 4                    |
| AOTX96265-2RU   | 1.096    | 0       | 0          | 4       | 4                    |
| CO98067-7RU     | 1.079    | 1       | 1          | 4       | 3                    |
| CO99053-3RU     | 1.088    | 0       | 1          | 4       | 3                    |
| CO99053-4RU     | 1.088    | 1       | 1          | 4       | 4                    |
| CO99100-1RU     | 1.080    | 1       | 1          | 3       | 3                    |
| PA99N2-1        | 1.093    | 0       | 1          | 5       | 4                    |
| PA99N82-4       | 1.096    | 0       | 1          | 4       | 4                    |
| PA00N14-2       | 1.090    | 1       | 1          | 4       | 4                    |
| Canela Russet   | 1.106    | 1       | 0          | 5       | 5                    |
| Ranger Russet   | 1.089    | 1       | 1          | 3       | 3                    |
| Russet Burbank  | 1.091    | 1       | 1          | 4       | 4                    |
| Russet Norkotah | 1.080    | 1       | 1          | 3       | 3                    |

<sup>&</sup>lt;sup>1</sup> Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 11A. Yield, grade and tuber shape for Advanced and Western Regional Red Trial entries - 2010.

|                         |       |       | Yield | d (Cwt/A) |        |       |               |
|-------------------------|-------|-------|-------|-----------|--------|-------|---------------|
|                         |       |       | Ţ     | JS #1     |        |       | -             |
| Clone                   | Total | Total | %     | 4-10 oz   | >10 oz | <4 oz | Tuber Shape 1 |
| BTX2332-1R              | 533   | 475   | 90    | 259       | 217    | 35    | R             |
| CO98012-5R              | 487   | 405   | 83    | 303       | 102    | 80    | R             |
| CO99076-6R              | 390   | 340   | 87    | 255       | 85     | 45    | R             |
| CO99256-2R              | 526   | 413   | 79    | 339       | 74     | 113   | Ov            |
| CO00277-2R              | 405   | 338   | 83    | 229       | 110    | 65    | R             |
| CO00291-5R              | 446   | 329   | 74    | 310       | 19     | 117   | R             |
| COTX94216-1R            | 445   | 329   | 74    | 231       | 98     | 111   | R             |
| COTX94218-1R            | 493   | 381   | 77    | 269       | 112    | 89    | R             |
| Norland (Dark Red)      | 483   | 446   | 92    | 306       | 140    | 30    | Ov            |
| Red LaSoda              | 648   | 573   | 89    | 290       | 282    | 29    | Ov            |
| Sangre-S10              | 486   | 429   | 88    | 215       | 214    | 41    | Ov            |
| Mean                    | 486   | 405   | 83    | 273       | 132    | 69    |               |
| LSD <sup>2</sup> (0.05) | 71    | 64    | 5     | 51        | 56     | 14    |               |

<sup>&</sup>lt;sup>1</sup>Tuber shape: R=round; Ov=oval.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 11B. Grade defects for Advanced and Western Regional Red Trial entries - 2010.

| Clone              | %<br>External<br>Defects | External Defects Observed <sup>2</sup> | %<br>Hollow<br>Heart <sup>3</sup> |
|--------------------|--------------------------|----------------------------------------|-----------------------------------|
| BTX2332-1R         | 4.1                      | GC*, GR                                | 0.8                               |
| CO98012-5R         | 0.5                      | GC*, GR*                               | 0.0                               |
| CO99076-6R         | 1.3                      | GC*, GR*                               | 0.3                               |
| CO99256-2R         | 0.1                      | GC*                                    | 0.0                               |
| CO00277-2R         | 0.2                      | GR*                                    | 0.0                               |
| CO00291-5R         | 0.0                      |                                        | 0.0                               |
| COTX94216-1R       | 1.3                      | MS*                                    | 0.0                               |
| COTX94218-1R       | 2.0                      | GC*                                    | 0.0                               |
| Norland (Dark Red) | 1.5                      | MS, GC*                                | 0.0                               |
| Red LaSoda         | 7.2                      | GC*, GR*                               | 16.8                              |
| Sangre-S10         | 3.4                      | MS, GC*                                | 0.5                               |

<sup>&</sup>lt;sup>1</sup>Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 11C. Growth characteristics of Advanced and Western Regional Red Trial entries - 2010.

| Clone                   | %<br>Stand | Emergence<br>Uniformity | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type <sup>4</sup> | Vine<br>Maturity <sup>5</sup> |
|-------------------------|------------|-------------------------|----------------------------|-----------------|---------------------------|---------------------------|-------------------------------|
| BTX2332-1R              | 100        | 4.0                     | 3.0                        | 3.0             | 2.8                       | 2.8                       | 3.0                           |
| CO98012-5R              | 100        | 3.0                     | 3.3                        | 2.1             | 4.0                       | 3.0                       | 3.0                           |
| CO99076-6R              | 96         | 3.5                     | 3.3                        | 2.4             | 3.0                       | 2.8                       | 2.3                           |
| CO99256-2R              | 96         | 2.8                     | 3.3                        | 3.3             | 3.8                       | 3.0                       | 3.0                           |
| CO00277-2R              | 96         | 3.0                     | 3.0                        | 3.3             | 2.3                       | 2.0                       | 2.0                           |
| CO00291-5R              | 100        | 3.0                     | 3.0                        | 3.4             | 4.5                       | 3.3                       | 3.0                           |
| COTX94216-1R            | 100        | 3.3                     | 3.0                        | 2.9             | 2.8                       | 2.5                       | 2.3                           |
| COTX94218-1R            | 100        | 2.8                     | 3.0                        | 3.3             | 3.8                       | 3.0                       | 3.0                           |
| Norland (Dark Red)      | 92         | 3.0                     | 3.5                        | 3.4             | 2.0                       | 2.0                       | 1.5                           |
| Red LaSoda              | 100        | 4.0                     | 3.3                        | 2.3             | 4.0                       | 3.0                       | 3.0                           |
| Sangre-S10              | 96         | 2.3                     | 2.8                        | 1.8             | 4.0                       | 3.0                       | 3.0                           |
| Mean                    | 98         | 3.2                     | 3.1                        | 2.8             | 3.4                       | 2.8                       | 2.6                           |
| LSD <sup>6</sup> (0.05) | 5          | 0.5                     | 0.5                        | 1.3             | 0.5                       | 0.4                       | 0.7                           |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 11D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Advanced and Western Regional Red Trial entries - 2010.

|                    | ВІ      | ackspot Inde | l<br>ex | %<br>Weight | Dormancy            | Enzymatic<br>Browning <sup>4</sup> |
|--------------------|---------|--------------|---------|-------------|---------------------|------------------------------------|
| Clone              | Bud End | Stem End     | Average | Loss        | (Days) <sup>3</sup> |                                    |
| BTX2332-1R         | 4.3     | 5.0          | 4.7     | 4.3         | 70                  | 3.6                                |
| CO98012-5R         | 4.7     | 4.9          | 4.8     | 5.8         | 63                  | 1.4                                |
| CO99076-6R         | 4.9     | 4.8          | 4.9     | 8.7         | 63                  | 1.4                                |
| CO99256-2R         | 4.9     | 4.8          | 4.9     | 7.3         | 84                  | 2,4                                |
| CO00277-2R         | 4.4     | 4.0          | 4.2     | 8.3         | 63                  | 4.6                                |
| CO00291-5R         | 4.6     | 4.8          | 4.7     | 8.9         | 56                  | 1.0                                |
| COTX94216-1R       | 5.0     | 4.8          | 4.9     | 3.4         | 92                  | 4.0                                |
| COTX94218-1R       | 4.5     | 4.2          | 4.4     | 4.7         | 112                 | 3.4                                |
| Norland (Dark Red) | 4.8     | 5.0          | 4.9     | 7.6         | 56                  | 4.4                                |
| Red LaSoda         | 4.4     | 5.0          | 4.7     | 2.3         | 63                  | 3.2                                |
| Sangre-S10         | 5.0     | 5.0          | 5.0     | 3.4         | 70                  | 3.0                                |
|                    |         |              |         |             |                     |                                    |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 11E. Specific gravity, french fry color, and texture for Advanced and Western Regional Red Trial entries - 2010.

|                    |          | Fry     | Color      | Fry Texture <sup>2</sup> |            |  |
|--------------------|----------|---------|------------|--------------------------|------------|--|
|                    | Specific | At      | 3 wks 55F+ | At                       | 3 wks 55F+ |  |
| Clone              | Gravity  | Harvest | 9 wks 45F  | Harvest                  | 9 wks 45F  |  |
| BTX2332-1R         | 1.069    | 2       | 3          | 2                        | 2          |  |
| CO98012-5R         | 1.085    | 2       | 2          | 2                        | 2          |  |
| CO99076-6R         | 1.085    | 2       | 2          | 3                        | 3          |  |
| CO99256-2R         | 1.087    | 1       | 1          | 3                        | 3          |  |
| CO00277-2R         | 1.077    | 2       | 3          | 2                        | 2          |  |
| CO00291-5R         | 1.090    | 2       | 3          | 2                        | 2          |  |
| COTX94216-1R       | 1.077    | 3       | 3          | 2                        | 3          |  |
| COTX94218-1R       | 1.085    | 0       | 2          | 2                        | 2          |  |
| Norland (Dark Red) | 1.067    | 1       | 2          | 2                        | 2          |  |
| Red LaSoda         | 1.081    | 3       | 4          | 3                        | 3          |  |
| Sangre-S10         | 1.084    | 2       | 2          | 2                        | 3          |  |

<sup>&</sup>lt;sup>1</sup> Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 12A. Yield, grade and tuber shape for Advanced and Western Regional Specialty Trial entries - 2010.

|                                |       |            | Yield    | d (Cwt/A)  | )          |           |               |
|--------------------------------|-------|------------|----------|------------|------------|-----------|---------------|
|                                |       |            | J        | JS #1      |            |           |               |
| Clone                          | Total | Total      | %        | 4-10 oz    | >10 oz     | <4 oz     | Tuber Shape 1 |
| A99326-1PY                     | 476   | 434        | 91       | 227        | 200        | 20        | 0             |
| A99320-1F1<br>A00286-3Y        | 595   | 512        | 91<br>86 | 398        | 208<br>114 | 38<br>75  | Ov<br>Ov      |
| AC99329-7PW/Y                  | 521   | 435        | 84       | 398<br>297 | 138        | 82        |               |
| AC99329-7FW/1<br>AC99330-1P/Y  | 505   | 433<br>376 | 75       | 307        | 69         | 82<br>129 | Ov<br>R       |
| ATC00293 -1W/Y                 | 573   | 520        | 91       | 264        | 256        | 40        | Ob            |
| CO97222-1R/R                   | 407   | 309        | 76       | 253        | 236<br>56  | 91        | Ov            |
| CO97227-2P/PW                  | 552   | 200        | 36       | 200        | 0          | 342       | Ob            |
| CO97227-2171 W<br>CO99045-1W/Y | 595   | 519        | 87       | 279        | 240        | 61        | Ob            |
| CO00412-5W/Y                   | 508   | 419        | 83       | 277        | 143        | 78        | Ob            |
| CO03017-2RU/Y                  | 394   | 322        | 82       | 195        | 127        | 60        | Ob            |
| CO03017-2RO/1<br>CO03027-2R/R  | 374   | 272        | 73       | 249        | 23         | 87        | Ov            |
| CO03094-5R/RW                  | 541   | 372        | 69       | 186        | 186        | 30        | L             |
| CO04013-1W/Y                   | 474   | 233        | 49       | 226        | 7          | 242       | Öv            |
| CO04021-2R/Y                   | 533   | 495        | 93       | 265        | 230        | 27        | Ob            |
| CO04045-4P/P                   | 412   | 295        | 71       | 259        | 36         | 117       | Ov            |
| CO04061-1R/RW                  | 354   | 265        | 75       | 254        | 10         | 87        | Ov            |
| CO04117-5PW/Y                  | 312   | 165        | 53       | 161        | 4          | 141       | Ob            |
| POR03PG80-2                    | 546   | 515        | 94       | 222        | 294        | 18        | Ob            |
| Purple Majesty                 | 515   | 296        | 57       | 268        | 28         | 215       | Ov            |
| Yukon Gold                     | 426   | 389        | 91       | 164        | 225        | 29        | Ov            |
| Mean                           | 481   | 367        | 76       | 248        | 120        | 99        | -             |
| LSD <sup>2</sup> (0.05)        | 61    | 66         | 8        | 63         | 53         | 34        |               |

<sup>&</sup>lt;sup>1</sup>Tuber shape: R=round; Ov=oval; Ob=oblong; L=long.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 12B. Grade defects for Advanced and Western Regional Specialty Trial entries - 2010.

|                | %<br>External | External                      | %<br>Hollow |
|----------------|---------------|-------------------------------|-------------|
| Claus          | Defects       | Defects Observed <sup>2</sup> | 3           |
| Clone          | Defects       | Defects Observed              | Heart       |
| A99326-1PY     | 0.9           | MS*, GR                       | 3.0         |
| A00286-3Y      | 1.5           | MS, GR*                       | 0.0         |
| AC99329-7PW/Y  | 0.8           | GR*                           | 0.0         |
| AC99330-1P/Y   | 0.0           |                               | 0.0         |
| ATC00293 -1W/Y | 2.2           | GC*, GR                       | 3.9         |
| CO97222-1R/R   | 1.8           | MS, GC*                       | 0.0         |
| CO97227-2P/PW  | 1.6           | GC*                           | 0.0         |
| CO99045-1W/Y   | 2.6           | MS*, GR*                      | 0.0         |
| CO00412-5W/Y   | 2.2           | GR*                           | 2.7         |
| CO03017-2RU/Y  | 3.0           | MS, GR*                       | 0.0         |
| CO03027-2R/R   | 4.2           | GC*                           | 0.0         |
| CO03094-5R/RW  | 6.6           | MS*, GR                       | 0.0         |
| CO04013-1W/Y   | 0.0           |                               | 0.5         |
| CO04021-2R/Y   | 2.1           | MS, GC, GR*                   | 0.0         |
| CO04045-4P/P   | 0.0           |                               | 0.0         |
| CO04061-1R/RW  | 0.7           | MS*, GC*                      | 0.0         |
| CO04117-5PW/Y  | 1.7           | MS*, GR                       | 0.0         |
| POR03PG80-2    | 2.5           | MS, GR*                       | 0.0         |
| Purple Majesty | 0.7           | MS*, GR                       | 1.2         |
| Yukon Gold     | 2.0           | MS*, GR                       | 0.0         |

Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 12C. Growth characteristics of Advanced and Western Regional Specialty Trial entries - 2010.

| Clone                   | %<br>Stand | Emergence<br>Uniformity | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type <sup>4</sup> | Vine<br>Maturity <sup>5</sup> |
|-------------------------|------------|-------------------------|----------------------------|-----------------|---------------------------|---------------------------|-------------------------------|
| A99326-1PY              | 98         | 3.8                     | 3.5                        | 2.1             | 4.0                       | 3.0                       | 3.0                           |
| A00286-3Y               | 97         | 4.0                     | 3.3                        | 2.9             | 5.0                       | 3.3                       | 3.5                           |
| AC99329-7PW/Y           | 99         | 4.0                     | 3.0                        | 3.0             | 4.0                       | 3.5                       | 3.5                           |
| AC99330-1P/Y            | 97         | 2.8                     | 3.0                        | 3.0             | 3.3                       | 3.0                       | 3.0                           |
| ATC00293 -1W/Y          | 100        | 3.3                     | 3.0                        | 2.8             | 4.8                       | 3.0                       | 3.0                           |
| CO97222-1R/R            | 95         | 2.0                     | 2.8                        | 2.3             | 3.0                       | 3.0                       | 3.0                           |
| CO97227-2P/PW           | 99         | 3.8                     | 3.3                        | 4.2             | 3.8                       | 3.0                       | 3.0                           |
| CO99045-1W/Y            | 98         | 3.8                     | 3.3                        | 3.1             | 4.0                       | 3.0                       | 3.0                           |
| CO00412-5W/Y            | 97         | 4.0                     | 3.0                        | 2.8             | 3.3                       | 3.0                       | 3.0                           |
| CO03017-2RU/Y           | 98         | 3.0                     | 3.3                        | 2.3             | 3.0                       | 2.8                       | 2.0                           |
| CO03027-2R/R            | 98         | 2.3                     | 3.0                        | 2.0             | 3.0                       | 3.0                       | 3.0                           |
| CO03094-5R/RW           | 98         | 4.0                     | 3.5                        | 4.2             | 3.8                       | 3.0                       | 3.0                           |
| CO04013-1W/Y            | 99         | 3.0                     | 3.3                        | 3.9             | 4.5                       | 3.5                       | 3.0                           |
| CO04021-2R/Y            | 83         | 3.5                     | 2.5                        | 3.6             | 4.3                       | 3.3                       | 3.3                           |
| CO04045-4P/P            | 98         | 2.8                     | 3.3                        | 2.5             | 2.8                       | 2.5                       | 3.0                           |
| CO04061-1R/RW           | 97         | 2.0                     | 3.5                        | 2.0             | 3.0                       | 2.3                       | 3.0                           |
| CO04117-5PW/Y           | 91         | 2.3                     | 3.3                        | 3.3             | 2.3                       | 2.5                       | 2.5                           |
| POR03PG80-2             | 96         | 3.0                     | 3.3                        | 1.7             | 4.0                       | 3.0                       | 3.0                           |
| Purple Majesty          | 100        | 3.8                     | 3.3                        | 3.2             | 3.3                       | 2.8                       | 2.5                           |
| Yukon Gold              | 94         | 3.3                     | 3.0                        | 1.9             | 3.3                       | 3.0                       | 2.0                           |
| Mean                    | 97         | 3.2                     | 3.2                        | 2.8             | 3.6                       | 3.0                       | 2.9                           |
| LSD <sup>6</sup> (0.05) | 5          | 0.6                     | 0.6                        | 1.0             | 0.5                       | 0.5                       | 0.4                           |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 12D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Advanced and Western Regional Specialty Trial entries - 2010.

|                | ы       | ackspot Inde | ex <sup>1</sup> | %<br>Weight | Dormancy            | Enzymatic             |
|----------------|---------|--------------|-----------------|-------------|---------------------|-----------------------|
| Clone          | Bud End | Stem End     | Average         | Loss        | (Days) <sup>3</sup> | Browning <sup>4</sup> |
| A99326-1PY     | 5.0     | 5.0          | 5.0             | 2.8         | 98                  | 4.4                   |
| A00286-3Y      | 4.9     | 4.6          | 4.8             | 2.7         | 42                  | 4.6                   |
| AC99329-7PW/Y  | 4.7     | 2.9          | 3.8             | 5.9         | 42                  | 3.4                   |
| AC99330-1P/Y   | 5.0     | 4.8          | 4.9             | 4.7         | 63                  | 2,2                   |
| ATC00293 -1W/Y | 4.7     | 4.1          | 4.4             | 2.8         | 98                  | 4.6                   |
| CO97222-1R/R   |         |              |                 | 4.0         | 63                  | ****                  |
| CO97227-2P/PW  |         | *****        |                 | 8.4         | 63                  |                       |
| CO99045-1W/Y   | 4.8     | 5.0          | 4.9             | 3.9         | 70                  | 3.8                   |
| CO00412-5W/Y   | 4.4     | 4.7          | 4.6             | 4.6         | 63                  | 3.6                   |
| CO03017-2RU/Y  | 4.5     | 4.2          | 4.4             | 5.8         | 42                  | 3.4                   |
| CO03027-2R/R   | *****   | V-10-10-     |                 | 4.4         | 98                  |                       |
| CO03094-5R/RW  | 5.0     | 5.0          | 5.0             | 4.9         | 77                  |                       |
| CO04013-1W/Y   | 3.5     | 2.8          | 3.2             | 8.7         | 56                  | 2.6                   |
| CO04021-2R/Y   | 5.0     | 5.0          | 5.0             | 5.9         | 49                  | 2.8                   |
| CO04045-4P/P   | ****    | (90000)      | Water.          | 4.5         | 63                  | ****                  |
| CO04061-1R/RW  | ****    |              | ****            | 10.3        | 70                  |                       |
| CO04117-5PW/Y  | 5.0     | 5.0          | 5.0             | 2.8         | 42                  | 4.4                   |
| POR03PG80-2    | 5.0     | 5.0          | 5.0             | 3.6         | 84                  | 3.8                   |
| Purple Majesty | ***     |              |                 | 6.0         | 63                  |                       |
| Yukon Gold     | 5.0     | 4.9          | 5.0             | 2.5         | 63                  | 4.0                   |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 12E. Specific gravity, french fry color, and texture for Advanced and Western Regional Speciality Trial entries - 2010.

|                |          | Fry     | Color      | Fry Texture <sup>2</sup> |            |  |
|----------------|----------|---------|------------|--------------------------|------------|--|
|                | Specific | At      | 3 wks 55F+ | At                       | 3 wks 55F+ |  |
| Clone          | Gravity  | Harvest | 9 wks 45F  | Harvest                  | 9 wks 45F  |  |
| A99326-1PY     | 1.086    | 1       | 1          | 2                        | 3          |  |
| A00286-3Y      | 1.089    | 2       | 1          | 3                        | 3          |  |
| AC99329-7PW/Y  | 1.093    | 1       | 3          | 3                        | 3          |  |
| AC99330-1P/Y   | 1.077    | 1       | 3          | 3                        | 3          |  |
| ATC00293 -1W/Y | 1.081    | 2       | 2          | 3                        | 3          |  |
| CO97222-1R/R   | 1.080    |         |            | 3                        | 3          |  |
| CO97227-2P/PW  | 1.095    |         |            | 4                        | 4          |  |
| CO99045-1W/Y   | 1.093    | 2       | 3          | 3                        | 3          |  |
| CO00412-5W/Y   | 1.091    | 2       | 2          | 3                        | 3          |  |
| CO03017-2RU/Y  | 1.084    | 1       | 1          | 3                        | 4          |  |
| CO03027-2R/R   | 1.077    |         |            | 2                        | 2          |  |
| CO03094-5R/RW  | 1.080    |         |            | 3                        | 3          |  |
| CO04013-1W/Y   | 1.103    | 1       | 1          | 3                        | 3          |  |
| CO04021-2R/Y   | 1.089    | 1       | 1          | 3                        | 3          |  |
| CO04045-4P/P   | 1.073    |         |            | 3                        | 2          |  |
| CO04061-1R/RW  | 1.071    |         |            | 3                        | 2          |  |
| CO04117-5PW/Y  | 1.069    | 2       | 4          | 1                        | 1          |  |
| POR03PG80-2    | 1.084    | 2       | 3          | 2                        | 2          |  |
| Purple Majesty | 1.092    |         |            | 3                        | 3          |  |
| Yukon Gold     | 1.088    | 2       | 2          | 3                        | 3          |  |

<sup>&</sup>lt;sup>1</sup> Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of  $\leq$ 2 are acceptable.

<sup>&</sup>lt;sup>2</sup>Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Table 13A. Yield, grade and tuber shape for Advanced and Western Regional Chipping Trial entries - 2010.

|                         |       |       | Yie | ld (Cwt/A | A)     |       |               |
|-------------------------|-------|-------|-----|-----------|--------|-------|---------------|
|                         | 2     |       |     | US #1     |        |       |               |
| Clone                   | Total | Total | %   | 4-10 oz   | >10 oz | <4 oz | Tuber Shape 1 |
| AC00206-2W              | 340   | 281   | 83  | 236       | 45     | 57    | R             |
| AC03433-1W              | 447   | 371   | 83  | 276       | 95     | 43    | R             |
| AC03452-2W              | 489   | 419   | 86  | 328       | 91     | 62    | R             |
| CO00188-4W              | 411   | 355   | 86  | 303       | 52     | 39    | Ov            |
| CO00197-3W              | 484   | 396   | 82  | 325       | 71     | 85    | Ov            |
| CO00270-7W              | 378   | 348   | 93  | 209       | 140    | 24    | Ov            |
| CO03243-3W              | 449   | 396   | 88  | 292       | 103    | 48    | R             |
| Atlantic                | 502   | 459   | 92  | 242       | 217    | 28    | Ov            |
| Chipeta                 | 584   | 523   | 90  | 272       | 250    | 39    | Ov            |
| Mean                    | 454   | 394   | 87  | 276       | 118    | 47    |               |
| LSD <sup>2</sup> (0.05) | 59    | 56    | 5   | 49        | 49     | 18    |               |

<sup>&</sup>lt;sup>1</sup>Tuber shape: R=round; Ov=oval.

<sup>&</sup>lt;sup>2</sup>LSD=least significant difference.

Table 13B. Grade defects for Advanced and Western Regional Chipping Trial entries - 2010.

| Clone      | % External Defects | External<br>Defects Observed <sup>2</sup> | %<br>Hollow<br>Heart |
|------------|--------------------|-------------------------------------------|----------------------|
| AC00206-2W | 0.8                | GR*                                       | 1.9                  |
| AC03433-1W | 7.6                | GC*, GR                                   | 0.0                  |
| AC03452-2W | 1.7                | MS, GR*                                   | 0.2                  |
| CO00188-4W | 4.3                | MS, GC*, GR                               | 0.0                  |
| CO00197-3W | 0.5                | MS*, GR*                                  | 0.0                  |
| CO00270-7W | 1.5                | GR*                                       | 0.0                  |
| CO03243-3W | 1.4                | GC*, GR                                   | 0.0                  |
| Atlantic   | 2.8                | GC*, GR*                                  | 5.1                  |
| Chipeta    | 3.9                | GC*, GR                                   | 0.0                  |

Percent external defects based on the proportion of the total sample weight with significant defects.

<sup>&</sup>lt;sup>2</sup>MS=misshapen; SG=second growth; GC=growth crack; GR=green. Most prevalent defects for each clone are asterisked.

<sup>&</sup>lt;sup>3</sup>Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.

Table 13C. Growth characteristics of Advanced and Western Regional Chip Trial entries - 2010.

| Clone                   | %<br>Stand | Emergence<br>Uniformity | Vine<br>Vigor <sup>2</sup> | Stems/<br>Plant | Vine<br>Size <sup>3</sup> | Vine<br>Type <sup>4</sup> | Vine<br>Maturity <sup>5</sup> |
|-------------------------|------------|-------------------------|----------------------------|-----------------|---------------------------|---------------------------|-------------------------------|
| AC00206-2W              | 100        | 2.3                     | 3.0                        | 2.3             | 2.0                       | 2.5                       | 3.0                           |
| AC03433-1W              | 96         | 3.3                     | 3.0                        | 2.5             | 3.8                       | 3.0                       | 3.3                           |
| AC03452-2W              | 100        | 4.3                     | 3.5                        | 2.7             | 3.3                       | 2.8                       | 3.0                           |
| CO00188-4W              | 100        | 4.0                     | 3.5                        | 2.1             | 2.8                       | 3.0                       | 3.0                           |
| CO00197-3W              | 96         | 4.0                     | 3.3                        | 2.5             | 2.8                       | 2.8                       | 2.3                           |
| CO00270-7W              | 96         | 3.3                     | 3.0                        | 2.3             | 2.3                       | 2.5                       | 2.8                           |
| CO03243-3W              | 96         | 3.5                     | 2.8                        | 2.5             | 4.3                       | 3.0                       | 3.0                           |
| Atlantic                | 92         | 4.0                     | 3.5                        | 2.5             | 3.3                       | 3.0                       | 3.0                           |
| Chipeta                 | 100        | 4.8                     | 3.0                        | 2.0             | 4.8                       | 3.0                       | 3.0                           |
| Mean                    | 97         | 3.7                     | 3.2                        | 2.4             | 23.3                      | 2.8                       | 2.9                           |
| LSD <sup>6</sup> (0.05) | 5          | 0.6                     | 0.6                        | 0.6             | 0.5                       | 0.5                       | 0.4                           |

<sup>&</sup>lt;sup>1</sup>Emergence uniformity is rated on a 1 to 5 scale, with 5 indicating very uniform emergence.

<sup>&</sup>lt;sup>2</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.

<sup>&</sup>lt;sup>3</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.

<sup>&</sup>lt;sup>4</sup>Vine type is rated on a 1 to 5 scale, with 5 indicating very upright vines.

<sup>&</sup>lt;sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.

<sup>&</sup>lt;sup>6</sup>LSD=least significant difference.

Table 13D. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for Advanced and Western Regional Chip Trial entries - 2010.

| CI.        |         | ackspot Inde |         | %<br>Weight | Dormancy 3 | Enzymatic |
|------------|---------|--------------|---------|-------------|------------|-----------|
| Clone      | Bud End | Stem End     | Average | Loss        | (Days)     | Browning  |
| S          |         |              |         |             |            |           |
| AC00206-2W | 4.5     | 3.5          | 4.0     | 4.9         | 63         | 4.6       |
| AC03433-1W | 4.9     | 3.7          | 4.3     | 3.9         | 70         | 4.8       |
| AC03452-2W | 4.7     | 5.0          | 4.9     | 2.0         | 63         | 5.0       |
| CO00188-4W | 4.8     | 4.4          | 4.6     | 4.6         | 84         | 4.6       |
| CO00197-3W | 4.2     | 2.0          | 3.1     | 3.1         | 70         | 1.4       |
| CO00270-7W | 4.5     | 4.1          | 4.3     | 4.5         | 56         | 3.0       |
| CO03243-3W | 4.1     | 3.3          | 3.7     | 4.2         | 63         | 2.8       |
| Atlantic   | 3.3     | 2.3          | 2.8     | 4.7         | 56         | 4.0       |
| Chipeta    | 4.4     | 3.8          | 4.1     | 2.1         | 70         | 4.2       |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 13E. Chip color <sup>1</sup> after various storage regimes and specific gravity of Advanced and Western Regional Chip Trial entries - 2010.

| Clone      | Specific<br>Gravity | 6 wks<br>40F | 6 wks/40F<br>+3 wks/60F | 6 wks<br>50F | 6 wks/50F<br>+3 wks/60F |
|------------|---------------------|--------------|-------------------------|--------------|-------------------------|
|            |                     |              |                         |              | - 5 WK3/001             |
| AC00206-2W | 1.088               | 3.5          | 2.0                     | 2.0          | 1.5                     |
| AC03433-1W | 1.092               | 3.0          | 2.0                     | 3.0          | 2.5                     |
| AC03452-2W | 1.087               | 2.5          | 2.5                     | 1.5          | 1.0                     |
| CO00188-4W | 1.090               | 3.5          | 2.0                     | 2.0          | 1.5                     |
| CO00197-3W | 1.088               | 3.5          | 1.5                     | 2.5          | 2.0                     |
| CO00270-7W | 1.078               | 4.0          | 1.0                     | 3.0          | 2.0                     |
| CO03243-3W | 1.090               | 3.0          | 2.5                     | 1.5          | 2.0                     |
| Atlantic   | 1.103               | 4.5          | 4.0                     | 3.0          | 2.5                     |
| Chipeta    | 1.097               | 4.5          | 4.0                     | 3.0          | 1.5                     |
|            |                     |              |                         |              |                         |

<sup>&</sup>lt;sup>1</sup>Chip color was rated using the Snack Food Association 1-5 scale. Ratings of  $\leq$ 2.0 are acceptable.

Table 14A. Blackspot, storage weight loss, dormancy, and enzymatic browning evaluations for San Luis Valley chipping study entries - 2010.

|              | ום       | ackspot Ind | 1       | %<br>Waight | Danmanay                      | Engumetic  |
|--------------|----------|-------------|---------|-------------|-------------------------------|------------|
| Claus        |          | Stem End    |         |             | Dormancy (Davis) <sup>3</sup> | Enzymatic  |
| Clone        | Duu Ellu | Stelli Ellu | Average | Loss        | (Days)                        | Browning 4 |
|              |          |             |         |             |                               |            |
| AC00180-2W   | 4.3      | 3.6         | 4.0     | 3.4         | 88                            | 4.6        |
| AC00206-2W   | 4.1      | 3.7         | 3.9     | 3.7         | 77                            | 5.0        |
| AC01151-5W   | 4.0      | 1.8         | 2.9     | 2.1         | 73                            | 1.2        |
| AC03433-1W   | 4.8      | 4.1         | 4.5     | 2.3         | 88                            | 3.5        |
| AC03452-2W   | 4.6      | 3.6         | 4.1     | 2.3         | 77                            | 5.0        |
| AC05153-1W   | 4.2      | 3.3         | 3.8     | 3.5         | 88                            | 4.4        |
| CO95051-7W   | 4.6      | 2.8         | 3.7     | 6.9         | 73                            | 3.4        |
| CO00188-4W   | 4.8      | 3.3         | 4.1     | 3.6         | 104                           | 3.6        |
| CO00197-3W   | 4.3      | 2.7         | 3.5     | 2.8         | 69                            | 1.4        |
| CO00270-7W   | 4.6      | 4.4         | 4.5     | 5.4         | 48                            | 2.4        |
| CO02024-9W   | 4.4      | 2.8         | 3.6     | 2.9         | 94                            | 2.4        |
| CO02033-1W   | 3.1      | 2.2         | 2.7     | 3.0         | 122                           | 3.4        |
| CO02321-4W   | 4.3      | 3.8         | 4.1     | 3.6         | 73                            | 4.2        |
| CO03243-3W   | 4.4      | 3.0         | 3.7     | 2.7         | 74                            | 2.4        |
| CO05061-2P   | 4.7      | 4.1         | 4.4     | 4.2         | <b>8</b> 1                    | 2.8        |
| CO05061-6W   | 4.6      | 4.4         | 4.5     | 2.6         | 102                           | 4.2        |
| CO05061-7W   | 4.6      | 3.9         | 4.3     | 6.2         | 60                            | 4.6        |
| COTX90046-1W | 4.0      | 3.1         | 3.6     | 5.5         | 61                            | 3.0        |
| Atlantic     | 3.4      | 3.2         | 3.3     | 3.0         | 83                            | 4.2        |
| Chipeta      | 4.8      | 4.7         | 4.8     | 2.5         | 109                           | 4.2        |
| Snowden      | 3.8      | 3.3         | 3.6     | 2.6         | 90                            | 3.2        |
|              |          |             |         |             |                               |            |

<sup>&</sup>lt;sup>1</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.

<sup>&</sup>lt;sup>2</sup>Tubers were stored at 45F for 91 days.

<sup>&</sup>lt;sup>3</sup>Days from harvest to first visible growth. Tubers were stored at 45F.

<sup>&</sup>lt;sup>4</sup>Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.

Table 14B. Chip color <sup>1</sup> after various storage regimes and specific gravity of San Luis Valley chipping study entries - 2010.

| Clone        | Specific<br>Gravity | 6 wks<br>40F | 6 wks/40F<br>+3 wks/60F | 6 wks<br>50F | 6 wks/50F<br>+3 wks/60F |
|--------------|---------------------|--------------|-------------------------|--------------|-------------------------|
|              |                     |              |                         |              |                         |
| AC00180-2W   | 1.091               | 4.5          | 4.0                     | 1.0          | 1.0                     |
| AC00206-2W   | 1.083               | 3.5          | 2.5                     | 2.0          | 1.5                     |
| AC01151-5W   | 1.082               | 4.0          | 4.0                     | 2.5          | 1.0                     |
| AC03433-1W   | 1.083               | 3.0          | 3.5                     | 2.0          | 1.0                     |
| AC03452-2W   | 1.076               | 3.5          | 2.5                     | 1.5          | 1.5                     |
| AC05153-1W   | 1.099               | 4.5          | 3.5                     | 2.0          | 1.5                     |
| AC06198-4W   | 1.073               | 5.0          | 4.5                     | 3.0          | 2.0                     |
| CO95051-7W   | 1.090               | 4.5          | 3.5                     | 1.0          | 1.5                     |
| CO00188-4W   | 1.092               | 4.5          | 3.0                     | 1.5          | 2.0                     |
| CO00197-3W   | 1.084               | 3.0          | 4.5                     | 2.5          | 2.5                     |
| CO00270-7W   | 1.083               | 3.5          | 4.0                     | 1.0          | 2.5                     |
| CO02024-9W   | 1.088               | 4.5          | 1.5                     | 1.5          | 1.5                     |
| CO02033-1W   | 1.095               | 4.0          | 3.0                     | 2.5          | 2.5                     |
| CO02321-4W   | 1.098               | 4.5          | 2.5                     | 2.0          | 3.0                     |
| CO03243-3W   | 1.090               | 4.5          | 4.0                     | 2.5          | 3.0                     |
| CO05061-2P   | 1.089               | 2.5          | 2.0                     | 1.0          | 1.0                     |
| CO05061-6W   | 1.091               | 3.0          | 2.5                     | 1.5          | 1.5                     |
| CO05061-7W   | 1.089               | 3.5          | 2.0                     | 2.0          | 1.5                     |
| CO05071-1W   | 1.076               | 5.0          | 4.5                     | 3.5          | 3.0                     |
| COTX90046-1W | 1.078               | 5.0          | 5.0                     | 4.0          | 4.0                     |
| Atlantic     | 1.097               | 4.0          | 4.0                     | 2.5          | 2.5                     |
| Chipeta      | 7.082               | 5.0          | 4.5                     | 3.0          | 2.5                     |
| Snowden      | 1.094               | 5.0          | 2.5                     | 2.5          | 2.0                     |

Chip color was rated using the Snack Food Association 1-5 scale. Ratings of <2.0 are acceptable.

Table 15. Summary comparison of advanced selections and named cultivars for yield, grade, maturity, specific gravity, and grade defects.

| Clone                 | Usage     | #<br>Trials | Total<br>Yield<br>(Cwt/A) | %<br>US#1 | Vine<br>Maturity <sup>2</sup> | Specific<br>Gravity | %<br>External<br>Defects <sup>3</sup> | %<br>Hollow<br>Heart |
|-----------------------|-----------|-------------|---------------------------|-----------|-------------------------------|---------------------|---------------------------------------|----------------------|
| Russets               |           |             |                           |           |                               |                     |                                       |                      |
| AC99375-1RU           | Dual      | 6           | 499                       | 83        | 3.1                           | 1.098               | 1.5                                   | 0.0                  |
| CO99053-3RU           | Dual      | 6           | 509                       | 90        | 3.4                           | 1.089               | 2.7                                   | 0.7                  |
| CO99053-4RU           | Dual      | 6           | 362                       | 85        | 2.1                           | 1.090               | 1.4                                   | 0.0                  |
| CO99100-1RU           | Dual      | 6           | 366                       | 85        | 1.4                           | 1.083               | 4.2                                   | 0.1                  |
| Canela Russet         | FM        | 15          | 376                       | 90        | 3.1                           | 1.096               | 1.0                                   | 0.1                  |
| Centennial Russet     | FM        | 35          | 294                       | 77        | 3.0                           | 1.080               | 0.8                                   | 0.3                  |
| Mesa Russet           | Dual      | 10          | 419                       | 86        | 2.9                           | 1.082               | 1.8                                   | 2.5                  |
| Rio Grande Russet     | FM        | 22          | 533                       | 80        | 3.0                           | 1.087               | 2.8                                   | 0.4                  |
| Russet Norkotah       | FM        | 82          | 385                       | 85        | 1.9                           | 1.079               | 2.2                                   | 0.4                  |
| Russet Nugget         | Dual      | 64          | 441                       | 81        | 3.8                           | 1.093               | 1.5                                   | 0.2                  |
| Reds                  |           |             |                           |           |                               |                     |                                       |                      |
| CO98012-5R            | FM        | 7           | 469                       | 78        | 3.0                           | 1.080               | 0.6                                   | 0.3                  |
| CO99076-6R            | FM        | 6           | 400                       | 78        | 1.6                           | 1.086               | 2.1                                   | 0.0                  |
| CO99256-2R            | FM        | 6           | 515                       | 67        | 2.9                           | 1.088               | 0.4                                   | 0.1                  |
| CO00277-2R            | FM        | 5           | 416                       | 77        | 1.7                           | 1.080               | 0.8                                   | 0.4                  |
| CO00291-5R            | FM        | 5           | 396                       | 78        | 3.3                           | 1.084               | 0.4                                   | 0.0                  |
| Colorado Rose         | FM        | 14          | 517                       | 85        | 2.7                           | 1.082               | 2.7                                   | 0.3                  |
| Rio Colorado          | FM        | 11          | 405                       | 56        | 1.7                           | 1.087               | 0.9                                   | 0.0                  |
| Sangre-S10            | FM        | 27          | 535                       | 88        | 3.3                           | 1.076               | 1.9                                   | 1.6                  |
| Specialties           |           |             |                           |           |                               |                     |                                       |                      |
| CO97226-2R/R          | Spec      | 7           | 364                       | 34        | 2.3                           | 1.080               | 0.2                                   | 0.0                  |
| CO97232-1R/Y          | Spec      | 7           | 420                       | 67        | 2.0                           | 1.081               | 0.8                                   | 0.0                  |
| CO97232-2R/Y          | Spec      | 7           | 440                       | 84        | 2.6                           | 1.071               | 0.8                                   | 1.0                  |
| CO97233-3R/Y          | Spec      | 7           | 477                       | 73        | 3.3                           | 1.082               | 4.0                                   | 2.3                  |
| CO97222-1R/R          | Spec      | 7           | 396                       | 58        | 2.5                           | 1.032               | 1.5                                   | 0.0                  |
| CO97227-2P/PW         | Spec      | 7           | 493                       | 26        | 2.8                           | 1.088               | 1.1                                   | 0.0                  |
| Table 15 continued on | next page |             |                           |           |                               |                     |                                       |                      |

Table 15 (cont'd). Summary comparison of advanced selections and named cultivars for yield, grade, maturity, specific gravity, and grade defects.

| Clone                   | Usage        | #<br>Trials | Total<br>Yield<br>(Cwt/A) | %<br>US #1 | Vine<br>Maturity <sup>2</sup> | Specific<br>Gravity | % External Defects | %<br>Hollow<br>Heart |
|-------------------------|--------------|-------------|---------------------------|------------|-------------------------------|---------------------|--------------------|----------------------|
| Specialties (continued) |              |             |                           |            |                               | 0                   |                    |                      |
| AC99329-7PW/Y           | Spec         | 6           | 534                       | 78         | 3.1                           | 1.091               | 1.5                | 0.3                  |
| AC99330-1P/Y            | Spec         | 6           | 504                       | 57         | 2.8                           | 1.082               | 0.0                | 0.2                  |
| CO99045-1W/Y            | Spec         | 6           | 562                       | 79         | 3.1                           | 1.089               | 2.8                | 0.0                  |
| ATC00293-1W/Y           | Spec         | 5           | 576                       | 85         | 3.0                           | 1.082               | 4.0                | 3.3                  |
| CO00405-1RF             | Spec         | 5           | 352                       | 76         | 1.4                           | 1.081               | 2.2                | 0.0                  |
| CO00412-5W/Y            | Spec         | 5           | 492                       | 74         | 2.9                           | 1.089               | 2.6                | 1.3                  |
| CO00415-1RF             | Spec         | 5           | 372                       | 73         | 1.4                           | 1.076               | 3.7                | 0.0                  |
| CO01399-10P/Y           | Spec         | 4           | 566                       | 76         | 3.3                           | 1.080               | 1.1                | 0.0                  |
| Mountain Rose           | Spec         | 8           | 383                       | 68         | 2.2                           | 1.081               | 1.1                | 0.0                  |
| Purple Majesty          | Spec         | 15          | 502                       | 57         | 2.2                           | 1.086               | 0.6                | 1.2                  |
| Yukon Gold              | Spec         | 29          | 413                       | 89         | 1.9                           | 1.086               | 1.6                | 0.5                  |
| Chippers                |              |             |                           |            |                               |                     |                    |                      |
| CO00188-4W              | Chip         | 5           | 437                       | 76         | 2.7                           | 1.091               | 1.7                | 0.1                  |
| CO00197-3W              | Chip         | 5           | 482                       | 74         | 2.3                           | 1.086               | 0.7                | 0.8                  |
| CO00270-7W              | Chip         | 5           | 419                       | 85         | 2.6                           | 1.087               | 1.2                | 0.0                  |
| Atlantic<br>Chipeta     | Chip<br>Chip | 39<br>36    | 463<br>542                | 87<br>85   | 3.2<br>3.3                    | 1.098<br>1.090      | 2.5<br>5.1         | 5.1<br>0.5           |

<sup>&</sup>lt;sup>1</sup>FM=fresh market; Dual= fresh market and processing potential; SPEC=specialty.

<sup>&</sup>lt;sup>2</sup>Vine maturity: 1=very early; 2=early; 3=medium; 4=late; 5=very late.

<sup>&</sup>lt;sup>3</sup>Includes defects such as second growth, growth crack, misshapen, and green.

<sup>&</sup>lt;sup>4</sup>Based on tubers greater than 10 ounces.

Figure 1. Photographs of advanced selections.

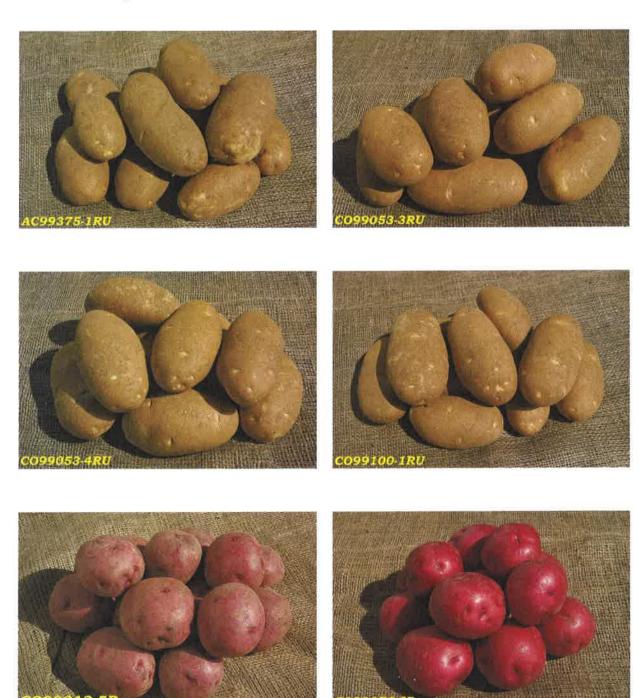
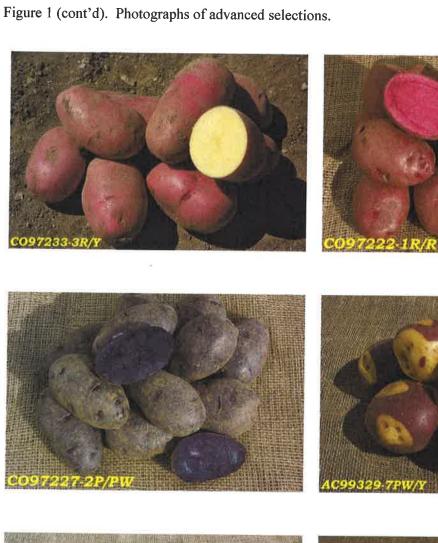




Figure 1 (cont'd). Photographs of advanced selections.







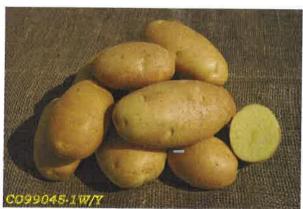
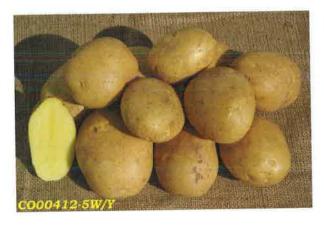




Figure 1 (cont'd). Photographs of advanced selections.














Figure 1 (cont'd). Photographs of advanced selections.





Table 16A. Detailed data summary for AC99375-1RU,

| Variable                   | e                              | # Trials | Mean              | Range              |
|----------------------------|--------------------------------|----------|-------------------|--------------------|
| Total Yield (Cwt           | :/A)                           | 6        | 499               | 435-545            |
| Yield US #1 (Cw            | rt/A)                          | 6        | 413               | 377-457            |
| % US #1                    |                                | 6        | 83                | 77-91              |
| Yield >10 oz (Cv           | vt/A)                          | 6        | 104               | 74-148             |
| Yield <4 oz (Cw            | t/A)                           | 6        | 79                | 32-118             |
| % External Defe            | cts                            | 6        | 1.5               | 0.3-2.3            |
| % Hollow Heart             | 2                              | 6        | 0.0               | 0.0-0.0            |
| % Stand                    |                                | 6        | 97                | 94-100             |
| Emergence Unifo            | ormity                         | 6        | 3.3               | 2.8-4.3            |
| Vine Vigor <sup>3</sup>    |                                | 6        | 3.5               | 2.5-4.0            |
| Stems/Plant                |                                | 6        | 3.6               | 2.1-6.3            |
| Vine Size <sup>4</sup>     |                                | 6        | 4.3               | 3.0-5.0            |
| Vine Maturity <sup>5</sup> |                                | 6        | 3.1               | 3.0-3.5            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 7        | 4.7<br>4.4<br>4.6 | 3.8-5.0<br>3.7-5.0 |
| Weight Loss <sup>7</sup>   |                                | 7        | 2.4               | 1.4-2.8            |
| Dormancy <sup>8</sup>      |                                | 7        | 95                | 82-132             |
| Enzymatic Browning 9       |                                | 7        | 2.9               | 1.4-4.6            |
| Specific Gravity           |                                | 7        | 1.098             | 1.090-1.104        |
| Fry Color 10               | Harvest<br>Storage             |          | 0.9<br>1.1        | 0.0-2.0<br>0.0-2.0 |
| Fry Texture 11             | Harvest<br>Storage             |          | 3.9<br>4.0        | 3.0-5.0<br>3.0-5.0 |

Table 16B. Detailed data summary for CO99053-3RU.

| Varia                      | ble                            | # Trials | Mean              | Range              |
|----------------------------|--------------------------------|----------|-------------------|--------------------|
| Total Yield (Cwt/A)        |                                | 6        | 509               | 456-559            |
| Yield US #1 (C             | Cwt/A)                         | 6        | 458               | 415-517            |
| % US #1                    |                                | 6        | 90                | 88-93              |
| Yield >10 oz (0            | Cwt/A)                         | 6        | 231               | 159-299            |
| Yield <4 oz (C             | wt/A)                          | 6        | 38                | 22-58              |
| % External De              | fects                          | 6        | 2.7               | 0.7-4.2            |
| % Hollow Hear              | rt <sup>2</sup>                | 6        | 0.7               | 0.0-2.9            |
| % Stand                    |                                | 6        | 99                | 95-100             |
| Emergence Uni              | iformity                       | 6        | 3.2               | 3.0-4.0            |
| Vine Vigor <sup>3</sup>    |                                | 6        | 3.3               | 2.8-3.8            |
| Stems/Plant                |                                | 6        | 3.8               | 2.5-5.2            |
| Vine Size <sup>4</sup>     |                                | 6        | 4.0               | 3.8-4.3            |
| Vine Maturity <sup>5</sup> | i                              | 6        | 3.4               | 3.0-4.0            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 7        | 4.8<br>4.3<br>4.5 | 4.3-5.0<br>2.8-5.0 |
| Weight Loss <sup>7</sup>   |                                | 7        | 2.8               | 1.2-7.6            |
| Dormancy <sup>8</sup>      |                                | 7        | 84                | 54-132             |
| Enzymatic Browning 9       |                                | 7        | 4.1               | 3.2-4.6            |
| Specific Gravity           |                                | 7        | 1.089             | 1.077-1.096        |
| Fry Color 10               | Harvest<br>Storage             | 7<br>7   | 0.9<br>1.9        | 0.0-2.0<br>1.0-3.0 |
| Fry Texture 11             | Harvest<br>Storage             | 7<br>7   | 3.4<br>3.3        | 3.0-4.0<br>2.0-4.0 |
|                            |                                |          |                   |                    |

Table 16C. Detailed data summary for CO99053-4RU.

| ble                            | # Trials                                                                                         | Mean                                                                                                                                                               | Range                                                                                                                                                                                                                                                 |
|--------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Yield (Cwt/A)            |                                                                                                  | 362                                                                                                                                                                | 320-403                                                                                                                                                                                                                                               |
| Cwt/A)                         | 6                                                                                                | 307                                                                                                                                                                | 269-329                                                                                                                                                                                                                                               |
|                                | 6                                                                                                | 85                                                                                                                                                                 | 78-91                                                                                                                                                                                                                                                 |
| Cwt/A)                         | 6                                                                                                | 80                                                                                                                                                                 | 60-95                                                                                                                                                                                                                                                 |
| wt/A)                          | 6                                                                                                | 50                                                                                                                                                                 | 30-80                                                                                                                                                                                                                                                 |
| fects                          | 6                                                                                                | 1.4                                                                                                                                                                | 0.0-3.4                                                                                                                                                                                                                                               |
| rt <sup>2</sup>                | 6                                                                                                | 0.0                                                                                                                                                                | 0.0-0.0                                                                                                                                                                                                                                               |
|                                | 6                                                                                                | 98                                                                                                                                                                 | 96-100                                                                                                                                                                                                                                                |
| formity                        | 6                                                                                                | 3.1                                                                                                                                                                | 3.0-3.3                                                                                                                                                                                                                                               |
|                                | 6                                                                                                | 2.9                                                                                                                                                                | 2.5-3.0                                                                                                                                                                                                                                               |
|                                | 6                                                                                                | 3.8                                                                                                                                                                | 2.9-4.6                                                                                                                                                                                                                                               |
|                                | 6                                                                                                | 2.8                                                                                                                                                                | 2.5-3.3                                                                                                                                                                                                                                               |
|                                | 6                                                                                                | 2.1                                                                                                                                                                | 1.3-2.8                                                                                                                                                                                                                                               |
| Bud End<br>Stem End<br>Average | 7<br>7<br>7                                                                                      | 4.7<br>4.6<br>4.7                                                                                                                                                  | 3.9-5.0<br>4.0-5.0                                                                                                                                                                                                                                    |
|                                | 7                                                                                                | 2.9                                                                                                                                                                | 1.5-3.9                                                                                                                                                                                                                                               |
|                                | 7                                                                                                | 68                                                                                                                                                                 | 49-87                                                                                                                                                                                                                                                 |
| Enzymatic Browning 9           |                                                                                                  | 4.5                                                                                                                                                                | 4.4-4.8                                                                                                                                                                                                                                               |
| /                              | 7                                                                                                | 1.090                                                                                                                                                              | 1.080-1.090                                                                                                                                                                                                                                           |
| Harvest<br>Storage             | 7<br>7                                                                                           | 1.1<br>1.9                                                                                                                                                         | 0.0-3.0<br>1.0-3.0                                                                                                                                                                                                                                    |
| Harvest<br>Storage             | 7 7                                                                                              | 3.6<br>3.4                                                                                                                                                         | 2.0-4.0<br>2.0-4.0                                                                                                                                                                                                                                    |
|                                | Cwt/A)  Cwt/A)  wt/A)  fects  formity  Bud End Stem End Average  vning  Harvest Storage  Harvest | wt/A) 6  Cwt/A) 6  Cwt/A) 6  wt/A) 6  wt/A) 6  wt/A) 6  fects 6  formity 6  formity 6  formity 7  Stem End 7  Average 7  Vining 7  Harvest 7  Storage 7  Harvest 7 | wt/A) 6 362  Cwt/A) 6 307  6 85  Cwt/A) 6 80  wt/A) 6 50  fects 6 1.4  rt 2 6 0.0  6 98  formity 6 3.1  6 2.9  6 3.8  6 2.8  6 2.1  Bud End 7 4.7  Stem End 7 4.6  Average 7 4.7  7 2.9  7 68  vning 9 7 4.5  7 1.090  Harvest 7 1.090  Harvest 7 3.6 |

Table 16D. Detailed data summary for CO99100-1RU.

| Varia                    | ıble                           | # Trials    | Mean              | Range              |
|--------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (Cwt/A)      |                                | 6           | 366               | 329-409            |
| Yield US #1 (0           | Cwt/A)                         | 6           | 310               | 272-377            |
| % US #1                  |                                | 6           | 85                | 76-92              |
| Yield >10 oz (           | Cwt/A)                         | 6           | 80                | 48-121             |
| Yield <4 oz (C           | Cwt/A)                         | 6           | 41                | 25-82              |
| % External De            | fects                          | 6           | 4.2               | 0.0-9.1            |
| % Hollow Hea             | ırt <sup>2</sup>               | 6           | 0.1               | 0.0-0.5            |
| % Stand                  |                                | 6           | 99                | 97-100             |
| Emergence Un             | iformity                       | 6           | 3.2               | 3.0-3.5            |
| Vine Vigor <sup>3</sup>  |                                | 6           | 3.5               | 2.8-4.0            |
| Stems/Plant              |                                | 6           | 3.3               | 2.6-4.2            |
| Vine Size <sup>4</sup>   |                                | 6           | 2.4               | 2.3-2.5            |
| Vine Maturity            | 5                              | 6           | 1.4               | 1.0-2.0            |
| Blackspot 6              | Bud End<br>Stem End<br>Average | 7<br>7<br>7 | 4.6<br>4.8<br>4.7 | 3.8-5.0<br>4.5-5.0 |
| Weight Loss <sup>7</sup> |                                | 7           | 3.7               | 1.4-5.7            |
| Dormancy <sup>8</sup>    |                                | 7           | 61                | 49-77              |
| Enzymatic Browning 9     |                                | 7           | 3.8               | 3.4-4.6            |
| Specific Gravity         |                                | 7           | 1.083             | 1.078-1.087        |
| Fry Color 10             | Harvest<br>Storage             | 7<br>7      | 0.4<br>1.4        | 0.0-1.0<br>1.0-2.0 |
| Fry Texture 11           | Harvest<br>Storage             | 7<br>7      | 2.9<br>3.1        | 2.0-3.0<br>3.0-4.0 |
|                          | Storage                        |             | 3.1               | 3.0-4.0            |

Table 16E. Detailed data summary for Canela Russet.

| # Tria |                                                                                           |                                                                                                                                                                                                                                                                                 |
|--------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # 1118 | ıls Mean                                                                                  | Range                                                                                                                                                                                                                                                                           |
| 15     | 376                                                                                       | 312-468                                                                                                                                                                                                                                                                         |
| 15     | 339                                                                                       | 280-421                                                                                                                                                                                                                                                                         |
| 15     | 90                                                                                        | 86-94                                                                                                                                                                                                                                                                           |
| ) 15   | 112                                                                                       | 63-162                                                                                                                                                                                                                                                                          |
| 15     | 33                                                                                        | 20-49                                                                                                                                                                                                                                                                           |
| 15     | 1.0                                                                                       | 0.0-2.4                                                                                                                                                                                                                                                                         |
| 15     | 0.1                                                                                       | 0.0-0.9                                                                                                                                                                                                                                                                         |
| 14     | 97                                                                                        | 88-99                                                                                                                                                                                                                                                                           |
| y 14   | 2.8                                                                                       | 1.5-3.5                                                                                                                                                                                                                                                                         |
| 14     | 2.5                                                                                       | 2.0-3.0                                                                                                                                                                                                                                                                         |
| 14     | 1.8                                                                                       | 1.3-2.6                                                                                                                                                                                                                                                                         |
| 14     | 3.8                                                                                       | 3.0-4.3                                                                                                                                                                                                                                                                         |
| 14     | 3.1                                                                                       | 2.8-3.8                                                                                                                                                                                                                                                                         |
| End 19 | 4.6<br>4.1<br>4.4                                                                         | 3.7-5.0<br>2.5-5.0                                                                                                                                                                                                                                                              |
| 19     | 3.6                                                                                       | 1.3-7.0                                                                                                                                                                                                                                                                         |
| 19     | 143                                                                                       | 112-195                                                                                                                                                                                                                                                                         |
| 9 19   | 4.5                                                                                       | 3.4-5.0                                                                                                                                                                                                                                                                         |
| 19     | 1.096                                                                                     | 1.075-1.106                                                                                                                                                                                                                                                                     |
|        | 1.7<br>1.8                                                                                | 0.0-3.0<br>0.0-3.0                                                                                                                                                                                                                                                              |
|        | 3.7<br>3.8                                                                                | 3.0-5.0<br>3.0-5.0                                                                                                                                                                                                                                                              |
|        | 15 15 15 15 15 15 15 14 14 14 14 14 14 19 1erage 19 19 19 19 19 19 19 19 19 19 19 19 19 1 | 15 339 15 90 15 112 15 33 15 1.0 15 0.1 14 97 14 2.8 14 2.5 14 1.8 14 3.8 14 3.1 15 End 19 4.6 16 End 19 4.1 17 erage 19 4.4 19 3.6 19 143 19 1.096 19 1.7 1096 11 1.8 11 1.8 12 1.7 13 1.8 14 1.8 15 1.0 16 End 19 4.1 17 1.0 18 1.0 19 1.0 19 1.0 10 1.0 10 1.7 10 1.8 11 1.8 |

Table 16F. Detailed data summary for Centennial Russet.

| Varia                      | ble                            | # Trials       | Mean              | Range              |
|----------------------------|--------------------------------|----------------|-------------------|--------------------|
| Total Yield (Cwt/A)        |                                | 35             | 294               | 177-392            |
| Yield US #1 (0             | Cwt/A)                         | 35             | 229               | 129-320            |
| % US #1                    |                                | 35             | 77                | 62-89              |
| Yield >10 oz (             | Cwt/A)                         | 35             | 26                | 4-72               |
| Yield <4 oz (C             | wt/A)                          | 35             | 62                | 32-102             |
| % External De              | fects <sup>1</sup>             | 35             | 0.8               | 0.0-3.3            |
| % Hollow Hea               | rt <sup>2</sup>                | 35             | 0.3               | 0.0-3.3            |
| % Stand                    |                                | 35             | 97                | 90-99              |
| Emergence Un               | iformity                       | 15             | 3.2               | 3.0-3.5            |
| Vine Vigor <sup>3</sup>    |                                | 15             | 2.2               | 1.0-3.0            |
| Stems/Plant                |                                | 27             | 3.0               | 2.2-3.6            |
| Vine Size <sup>4</sup>     |                                | 15             | 2.6               | 2.0-3.0            |
| Vine Maturity <sup>5</sup> |                                | 35             | 3.0               | 2.5-3.5            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 43<br>43<br>46 | 4.8<br>4.8<br>4.8 | 3.7-5.0<br>4.2-5.0 |
| Weight Loss <sup>7</sup>   |                                | 46             | 6.2               | 1.6-9.0            |
| Dormancy <sup>8</sup>      |                                | 39             | 88                | 57-123             |
| Enzymatic Browning 9       |                                | 41             | 4.0               | 3.2-5.0            |
| Specific Gravity           |                                | 53             | 1.080             | 1.069-1.092        |
| Fry Color 10               | Harvest<br>Storage             | 45<br>45       | 3.7<br>3.9        | 3.0-4.0<br>3.0-5.0 |
| Fry Texture 11             | Harvest<br>Storage             | 45<br>45       | 2.3<br>2.2        | 1.0-4.0<br>1.0-3.0 |
|                            |                                |                |                   |                    |

Table 16G. Detailed data summary for Mesa Russet.

| Varial                     | ole                            | # Trials | Mean              | Range                  |
|----------------------------|--------------------------------|----------|-------------------|------------------------|
| Total Yield (Cwt/A)        |                                | 10       | 419               | 345-478                |
| Yield US #1 (C             | Cwt/A)                         | 10       | 360               | 279 - 406              |
| % US #1                    |                                | 10       | 86                | 81-92                  |
| Yield >10 oz (0            | Cwt/A)                         | 10       | 97                | 54 - 144               |
| Yield <4 oz (C             | wt/A)                          | 10       | 51                | 23 - 61                |
| % External De              | fects                          | 10       | 1.8               | 0.2-2.3                |
| % Hollow Hear              | rt <sup>2</sup>                | 10       | 2.5               | 0.0-5.4                |
| % Stand                    |                                | 10       | 96                | 91-99                  |
| Emergence Un               | iformity                       | 10       | 3.3               | 3.0-3.8                |
| Vine Vigor <sup>3</sup>    |                                | 10       | 3.7               | 2.8-4.0                |
| Stems/Plant                |                                | 10       | 3.0               | 2.2-3.7                |
| Vine Size <sup>4</sup>     |                                | 10       | 3.5               | 3.0-4.0                |
| Vine Maturity <sup>5</sup> | i                              | 10       | 2.9               | 2.8-3.0                |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 12       | 4.0<br>3.8<br>3.9 | 2.9 - 5.0<br>2.7- 5.0  |
| Weight Loss 7              |                                | 12       | 3.6               | 1.2-6.8                |
| Dormancy <sup>8</sup>      |                                | 12       | 94                | 83 - 105               |
| Enzymatic Browning 9       |                                | 12       | 4.6               | 4.0-5.0                |
| Specific Gravity           |                                | 12       | 1.082             | 1.074 - 1.090          |
| Fry Color 10               | Harvest<br>Storage             |          | 1.3<br>1.8        | 0.0 - 2.0<br>1.0 - 4.0 |
| Fry Texture 11             | Harvest<br>Storage             |          | 2.9<br>3.1        | 2.0 - 4.0<br>3.0 - 4.0 |
|                            |                                |          |                   |                        |

Table 16H. Detailed data summary for Rio Grande Russet.

| Varia                      | ble                            | # Trials       | Mean              | Range              |
|----------------------------|--------------------------------|----------------|-------------------|--------------------|
| Total Yield (Cwt/A)        |                                | 22             | 533               | 367-683            |
| Yield US #1 (C             | Cwt/A)                         | 22             | 426               | 255-603            |
| % US #1                    |                                | 22             | 80                | 65-91              |
| Yield >10 oz (             | Cwt/A)                         | 22             | 123               | 14-275             |
| Yield <4 oz (C             | wt/A)                          | 22             | 92                | 33-202             |
| % External De              | fects                          | 22             | 2.8               | 0.1-8.7            |
| % Hollow Hea               | rt <sup>2</sup>                | 22             | 0.4               | 0.0-4.1            |
| % Stand                    |                                | 22             | 99                | 96-100             |
| Emergence Un               | iformity                       | 22             | 3.5               | 3.0-4.0            |
| Vine Vigor <sup>3</sup>    |                                | 22             | 3.6               | 2.0-4.5            |
| Stems/Plant                |                                | 22             | 3.4               | 2.0-4.8            |
| Vine Size <sup>4</sup>     |                                | 22             | 4.1               | 3.5-5.0            |
| Vine Maturity <sup>5</sup> | i                              | 22             | 3.0               | 2.5 -3.5           |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 28<br>28<br>28 | 4.8<br>4.6<br>4.7 | 4.1-5.0<br>3.0-5.0 |
| Weight Loss <sup>7</sup>   |                                | 28             | 3.9               | 1.5-7.1            |
| Dormancy <sup>8</sup>      |                                | 28             | 91                | 68-120             |
| Enzymatic Browning 9       |                                | 28             | 4.0               | 3.0-5.0            |
| Specific Gravit            | у                              | 28             | 1.087             | 1.078-1.094        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage             | 28<br>28       | 2.2<br>2.9        | 1.0-4.0<br>2.0-4.0 |
| Fry Texture 11             | Harvest<br>Storage             | 28<br>28       | 3.1<br>3.0        | 2.0-4.0<br>2.0-4.0 |
|                            |                                |                |                   |                    |

Table 16I. Detailed data summary for Russet Norkotah.

| Variable                    |                               | # Trials       | Mean              | Range              |
|-----------------------------|-------------------------------|----------------|-------------------|--------------------|
| Total Yield (Cwt/A)         |                               | 82             | 385               | 174-557            |
| Yield US #1 (Cwt/           | 'A)                           | 82             | 325               | 144-480            |
| % US #1                     |                               | 82             | 85                | 69-94              |
| Yield >10 oz (Cwt           | /A)                           | 82             | 111               | 23-247             |
| Yield <4 oz (Cwt/A          | A)                            | 82             | 51                | 13-131             |
| % External Defect           | s                             | 82             | 2.2               | 0.0-5.3            |
| % Hollow Heart <sup>2</sup> |                               | 82             | 0.4               | 0.0-2.8            |
| % Stand                     |                               | 81             | 98                | 88-100             |
| Emergence Uniform           | mity                          | 72             | 3.2               | 1.0-4.0            |
| Vine Vigor <sup>3</sup>     |                               | 72             | 2.9               | 1.0-4.0            |
| Stems/Plant                 |                               | 77             | 3.7               | 2.3-5.7            |
| Vine Size <sup>4</sup>      |                               | 72             | 2.4               | 1.0-4.0            |
| Vine Maturity <sup>5</sup>  |                               | 81             | 1.9               | 1.0-3.0            |
| St                          | Bud End<br>tem End<br>Average | 81<br>81<br>82 | 4.7<br>4.3<br>4.5 | 2.9-5.0<br>2.6-5.0 |
| Weight Loss                 |                               | 82             | 3.7               | 1.0-7.1            |
| Dormancy <sup>8</sup>       |                               | 81             | 98                | 70-140             |
| Enzymatic Browning 9        |                               | 81             | 3.4               | 2.2-4.8            |
| Specific Gravity            |                               | 85             | 1.079             | 1.066-1.091        |
| Fry Color <sup>10</sup>     | Harvest<br>Storage            | 82<br>82       | 2.1<br>2.5        | 1.0-4.0<br>1.0-4.0 |
| 2                           | Harvest<br>Storage            | 82<br>82       | 2.7<br>2.7        | 1.0-4.0<br>1.0-4.0 |

Table 16J. Detailed data summary for Russet Nugget.

| Variable                    | #        | Trials | Mean  | Range       |
|-----------------------------|----------|--------|-------|-------------|
| -                           | <i>π</i> |        |       |             |
| Total Yield (Cwt/A)         |          | 64     | 441   | 284-585     |
| Yield US #1 (Cwt/A)         |          | 64     | 360   | 225-518     |
| % US #1                     |          | 64     | 81    | 68-93       |
| Yield >10 oz (Cwt/A)        |          | 64     | 91    | 11-258      |
| Yield <4 oz (Cwt/A)         |          | 64     | 73    | 30-133      |
| % External Defects 1        |          | 64     | 1.5   | 0.1-4.3     |
| % Hollow Heart <sup>2</sup> |          | 64     | 0.2   | 0.0-1.9     |
| % Stand                     |          | 64     | 98    | 96-100      |
| Emergence Uniformity        | /        | 54     | 3.3   | 2.8-4.0     |
| Vine Vigor <sup>3</sup>     |          | 54     | 3.4   | 2.5-4.0     |
| Stems/Plant                 |          | 60     | 3.4   | 2.1-5.7     |
| Vine Size <sup>4</sup>      |          | 54     | 4.2   | 3.8-5.0     |
| Vine Maturity <sup>5</sup>  |          | 64     | 3.8   | 3.0-4.3     |
| Blackspot <sup>6</sup> Bud  |          | 77     | 4.7   | 3.0-5.0     |
| Stem                        |          | 77     | 4.5   | 2.1-5.0     |
| Ave                         | rage     | 80     | 4.6   |             |
| Weight Loss                 |          | 80     | 3.1   | 1.1-5.5     |
| Dormancy <sup>8</sup>       |          | 75     | 95    | 57-144      |
| Enzymatic Browning 9        |          | 76     | 4.0   | 2.8-4.8     |
| Specific Gravity            |          | 82     | 1.093 | 1.072-1.110 |
| •                           | vest     | 80     | 1.4   | 0.0-3.0     |
| Stor                        | rage     | 80     | 2.0   | 1.0-3.0     |
| Fry Texture 11 Har          | vest     | 80     | 4.1   | 2.0-5.0     |
| Stor                        | age      | 80     | 4.0   | 2.0-5.0     |

Table 16K. Detailed data summary for CO98012-5R.

| Variable                          |                 | # Trials | Mean       | Range              |
|-----------------------------------|-----------------|----------|------------|--------------------|
| Total Yield (Cwt/A)               |                 | 7        | 469        | 368-546            |
| Yield US #1 (Cwt/A                | )               | 7        | 364        | 290-426            |
| % US #1                           |                 | 7        | 78         | 66-86              |
| Yield >10 oz (Cwt/A               | 7)              | 7        | 58         | 16-105             |
| Yield <4 oz (Cwt/A)               |                 | 7        | 102        | 65-170             |
| % External Defects 1              |                 | 7        | 0.6        | 0.0-1.3            |
| % Hollow Heart <sup>2</sup>       |                 | 7        | 0.3        | 0.0-1.1            |
| % Stand                           |                 | 7        | 98         | 95-100             |
| Emergence Uniformi                | ity             | 7        | 3.1        | 2.8-3.8            |
| Vine Vigor <sup>3</sup>           |                 | 7        | 3.1        | 2.8-3.5            |
| Stems/Plant                       |                 | 7        | 3.2        | 2.1-4.4            |
| Vine Size <sup>4</sup>            |                 | 7        | 3.5        | 3.0-4.0            |
| Vine Maturity <sup>5</sup>        |                 | 7        | 3.0        | 3.0-3.0            |
| Blackspot <sup>6</sup> Bu<br>Ster | d End<br>n End  | 8        | 4.0<br>3.5 | 3.0-4.8<br>2.4-4.9 |
|                                   | erage           | 8        | 3.8        |                    |
| Weight Loss <sup>7</sup>          |                 | 8        | 3.6        | 1.6-5.8            |
| Dormancy <sup>8</sup>             |                 | 8        | 63         | 54-77              |
| Enzymatic Browning 9              |                 | 8        | 2.0        | 1.2-3.0            |
| Specific Gravity                  |                 | 8        | 1.080      | 1.073-1.085        |
| ,                                 | arvest<br>orage | 8        | 1.9<br>3.0 | 1.0-3.0<br>2.0-4.0 |
| Fry Texture 11 Ha                 | arvest          | 8        | 2.3        | 2.0-3.0            |

Table 16L. Detailed data summary for CO99076-6R.

| Varia                      | ble                            | # Trials    | Mean              | Range              |
|----------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (C             | Total Yield (Cwt/A)            |             | 400               | 379-448            |
| Yield US #1 (0             | Cwt/A)                         | 6           | 312               | 262-344            |
| % US #1                    |                                | 6           | 78                | 68-87              |
| Yield >10 oz (             | Cwt/A)                         | 6           | 54                | 17-85              |
| Yield <4 oz (C             | wt/A)                          | 6           | 80                | 45-102             |
| % External De              | fects 1                        | 6           | 2.1               | 0.5-4.8            |
| % Hollow Hea               | rt <sup>2</sup>                | 6           | 0.0               | 0.0-0.3            |
| % Stand                    |                                | 6           | 96                | 92-99              |
| Emergence Un               | iformity                       | 6           | 3.3               | 2.8-4.0            |
| Vine Vigor <sup>3</sup>    |                                | 6           | 3.5               | 3.0-4.0            |
| Stems/Plant                |                                | 6           | 3.9               | 2.4-4.8            |
| Vine Size <sup>4</sup>     |                                | 6           | 3.1               | 3.0-3.3            |
| Vine Maturity <sup>5</sup> |                                | 6           | 1.6               | 1.0-2.3            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 7<br>7<br>7 | 3.9<br>3.2<br>3.6 | 3.1-4.9<br>2.3-4.8 |
| Weight Loss <sup>7</sup>   |                                | 7           | 6.5               | 1.7-8.7            |
| Dormancy <sup>8</sup>      |                                | 7           | 68                | 56-79              |
| Enzymatic Browning 9       |                                | 7           | 1.6               | 1.0-2.0            |
| Specific Gravity           |                                | 7           | 1.086             | 1.082-1.089        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage             | 7<br>7      | 2.1<br>2.7        | 1.0-3.0<br>2.0-3.0 |
| Fry Texture 11             | Harvest<br>Storage             | 7<br>7      | 2.4<br>2.0        | 2.0-3.0<br>1.0-3.0 |
|                            |                                |             |                   |                    |

Table 16M. Detailed data summary for CO99256-2R.

| Varia                   | ble                            | # Trials    | Mean              | Range              |
|-------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (C          | Total Yield (Cwt/A)            |             | 515               | 422-571            |
| Yield US #1 (0          | Cwt/A)                         | 6           | 350               | 235-413            |
| % US #1                 |                                | 6           | 67                | 56-78              |
| Yield >10 oz (          | Cwt/A)                         | 6           | 47                | 9-81               |
| Yield <4 oz (C          | wt/A)                          | 6           | 163               | 113-200            |
| % External De           | fects                          | 6           | 0.4               | 0.1-0.8            |
| % Hollow Hea            | rt <sup>2</sup>                | 6           | 0.1               | 0.0-0.3            |
| % Stand                 |                                | 6           | 98                | 96-100             |
| Emergence Un            | iformity                       | 6           | 3.0               | 2.8-3.8            |
| Vine Vigor <sup>3</sup> |                                | 6           | 3.1               | 2.8-3.5            |
| Stems/Plant             |                                | 6           | 3.7               | 2.9-4.8            |
| Vine Size <sup>4</sup>  |                                | 6           | 4.1               | 3.8-4.5            |
| Vine Maturity5          |                                | 6           | 2.9               | 2.5-3.0            |
| Blackspot <sup>6</sup>  | Bud End<br>Stem End<br>Average | 7<br>7<br>7 | 4.0<br>3.7<br>3.8 | 2.6-5.0<br>2.6-4.8 |
| Weight Loss 7           |                                | 7           | 5.3               | 1.6-7.3            |
| Dormancy <sup>8</sup>   |                                | 7           | 94                | 84-118             |
| Enzymatic Browning 9    |                                | 7           | 2.7               | 1.8-3.4            |
| Specific Gravity        |                                | 7           | 1.088             | 1.080-1.095        |
| Fry Color <sup>10</sup> | Harvest<br>Storage             | 7<br>7      | 1.1<br>1.9        | 1.0-2.0<br>1.0-2.0 |
| Fry Texture 11          | Harvest<br>Storage             | 7<br>7      | 2.9<br>2.7        | 2.0-3.0<br>2.0-3.0 |
|                         |                                |             |                   |                    |

Table 16N. Detailed data summary for CO00277-2R.

| Varia                    | ble                            | # Trials    | Mean              | Range              |
|--------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (C           | wt/A)                          | 5           | 416               | 380-458            |
| Yield US #1 (0           | Cwt/A)                         | 5           | 321               | 287-339            |
| % US #1                  |                                | 5           | 77                | 69-85              |
| Yield >10 oz (           | Cwt/A)                         | 5           | 63                | 39-110             |
| Yield <4 oz (C           | wt/A)                          | 5           | 91                | 54-127             |
| % External De            | fects <sup>1</sup>             | 5           | 0.8               | 0.0-1.8            |
| % Hollow Hea             | rt <sup>2</sup>                | 5           | 0.4               | 0.0-1.8            |
| % Stand                  |                                | 5           | 98                | 93-100             |
| Emergence Un             | iformity                       | 5           | 2.9               | 2.5-3.3            |
| Vine Vigor <sup>3</sup>  |                                | 5           | 3.0               | 2.8-3.3            |
| Stems/Plant              |                                | 5           | 4.5               | 3.3-5.7            |
| Vine Size <sup>4</sup>   |                                | 5           | 2.8               | 2.3-3.0            |
| Vine Maturity5           |                                | 5           | 1.7               | 1.3-2.0            |
| Blackspot <sup>6</sup>   | Bud End<br>Stem End<br>Average | 6<br>6<br>6 | 4.4<br>4.2<br>4.3 | 3.9-5.0<br>3.7-5.0 |
| Weight Loss <sup>7</sup> |                                | 6           | 5.4               | 2.7-8.3            |
| Dormancy <sup>8</sup>    |                                | 6           | 60                | 47-77              |
| Enzymatic Browning 9     |                                | 6           | 4.3               | 3.6-4.6            |
| Specific Gravit          | y                              | 6           | 1.080             | 1.075-1.084        |
| Fry Color <sup>10</sup>  | Harvest<br>Storage             | 6<br>6      | 3.0<br>3.8        | 2.0-4.0<br>3.0-4.0 |
| Fry Texture 11           | Harvest<br>Storage             | 6<br>6      | 2.5<br>2.3        | 2.0-3.0<br>2.0-3.0 |
|                          |                                |             |                   |                    |

Table 16O. Detailed data summary for CO00291-5R.

| Varia                    | ble                            | # Trials | Mean              | Range              |
|--------------------------|--------------------------------|----------|-------------------|--------------------|
| Total Yield (Cwt/A)      |                                | 5        | 396               | 343-446            |
| Yield US #1 (C           | Cwt/A)                         | 5        | 309               | 263-329            |
| % US #1                  |                                | 5        | 78                | 74-87              |
| Yield >10 oz (0          | Cwt/A)                         | 5        | 24                | 17-30              |
| Yield <4 oz (C           | wt/A)                          | 5        | 86                | 45-117             |
| % External De            | fects <sup>1</sup>             | 5        | 0.4               | 0.0-0.9            |
| % Hollow Hear            | rt <sup>2</sup>                | 5        | 0.0               | 0.0-0.0            |
| % Stand                  |                                | 5        | 98                | 97-99              |
| Emergence Uniformity     |                                | 5        | 2.9               | 2.3-3.5            |
| Vine Vigor <sup>3</sup>  |                                | 5        | 2.8               | 2.3-3.3            |
| Stems/Plant              |                                | 5        | 3.2               | 2.4-3.8            |
| Vine Size <sup>4</sup>   |                                | 5        | 4.2               | 3.5-4.5            |
| Vine Maturity5           |                                | 5        | 3.3               | 3.0-3.8            |
| Blackspot <sup>6</sup>   | Bud End<br>Stem End<br>Average | 6        | 3.0<br>3.4<br>3.2 | 2.0-4.6<br>2.0-4.8 |
| Weight Loss <sup>7</sup> |                                | 6        | 7.8               | 4.6-11.1           |
| Dormancy <sup>8</sup>    |                                | 6        | 73                | 56-87              |
| Enzymatic Browning 9     |                                | 6        | 1.7               | 1.0-2.2            |
| Specific Gravity         |                                | 6        | 1.084             | 1.072-1.090        |
| Fry Color <sup>10</sup>  | Harvest<br>Storage             | 6<br>6   | 2.2<br>3.0        | 2.0-3.0<br>2.0-4.0 |
| Fry Texture 11           | Harvest<br>Storage             | 6        | 2.3<br>2.2        | 1.0-3.0<br>1.0-3.0 |
|                          |                                |          |                   |                    |

Table 16P. Detailed data summary for Colorado Rose.

| Varia                      | ble                            | # Trials       | Mean              | Range              |
|----------------------------|--------------------------------|----------------|-------------------|--------------------|
| Total Yield (Cwt/A)        |                                | 14             | 517               | 390-641            |
| Yield US #1 (0             | Cwt/A)                         | 14             | 439               | 310-530            |
| % US #1                    |                                | 14             | 85                | 76-91              |
| Yield >10 oz (             | Cwt/A)                         | 14             | 153               | 69-249             |
| Yield <4 oz (C             | wt/A)                          | 14             | 63                | 43-98              |
| % External De              | fects 1                        | 14             | 2.7               | 0.2-6.5            |
| % Hollow Hea               | rt <sup>2</sup>                | 14             | 0.3               | 0.0-0.8            |
| % Stand                    |                                | 14             | 96                | 90-100             |
| Emergence Uniformity       |                                | 14             | 3.0               | 2.5-3.5            |
| Vine Vigor <sup>3</sup>    |                                | 14             | 3.0               | 2.2-3.8            |
| Stems/Plant                |                                | 14             | 3.5               | 2.3-4.5            |
| Vine Size <sup>4</sup>     |                                | 14             | 3.4               | 3.0-4.0            |
| Vine Maturity <sup>5</sup> |                                | 14             | 2.7               | 2.0-3.8            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 15<br>15<br>15 | 3.8<br>3.8<br>3.8 | 2.1-4.8<br>2.4-5.0 |
| Weight Loss 7              |                                | 15             | 5.8               | 1.4-8.2            |
| Dormancy <sup>8</sup>      |                                | 15             | 62                | 54-78              |
| Enzymatic Browning 9       |                                | 15             | 4.3               | 3.4-5.0            |
| Specific Gravity           |                                | 15             | 1.082             | 1.071-1.086        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage             | 15<br>14       | 2.3<br>2.9        | 1.0-3.0<br>2.0-3.0 |
| Fry Texture 11             | Harvest<br>Storage             | 15<br>14       | 2.8<br>2.9        | 2.0-4.0<br>2.0-3.0 |
|                            |                                |                |                   |                    |

Table 16Q. Detailed data summary for Rio Colorado.

| ole                            | # Trials                                                                                         | Mean                                                                                                                                                                                 | Range                                                                                                                                                                                                                                |
|--------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| vt/A)                          | 11                                                                                               | 405                                                                                                                                                                                  | 321-474                                                                                                                                                                                                                              |
| wt/A)                          | 11                                                                                               | 226                                                                                                                                                                                  | 115-298                                                                                                                                                                                                                              |
|                                | 11                                                                                               | 56                                                                                                                                                                                   | 28-72                                                                                                                                                                                                                                |
| Cwt/A)                         | 11                                                                                               | 10                                                                                                                                                                                   | 0-22                                                                                                                                                                                                                                 |
| vt/A)                          | 11                                                                                               | 175                                                                                                                                                                                  | 110-289                                                                                                                                                                                                                              |
| ects                           | 11                                                                                               | 0.9                                                                                                                                                                                  | 0.0-2.2                                                                                                                                                                                                                              |
| $t^2$                          | 11                                                                                               | 0.0                                                                                                                                                                                  | 0.0-0.0                                                                                                                                                                                                                              |
|                                | 11                                                                                               | 96                                                                                                                                                                                   | 92-99                                                                                                                                                                                                                                |
| formity                        | 11                                                                                               | 3.4                                                                                                                                                                                  | 3.0-4.0                                                                                                                                                                                                                              |
| Vine Vigor <sup>3</sup>        |                                                                                                  | 3.1                                                                                                                                                                                  | 2.8-4.0                                                                                                                                                                                                                              |
| Stems/Plant                    |                                                                                                  | 4.2                                                                                                                                                                                  | 2.9-6.4                                                                                                                                                                                                                              |
| Vine Size <sup>4</sup>         |                                                                                                  | 3.1                                                                                                                                                                                  | 2.5-3.8                                                                                                                                                                                                                              |
| Vine Maturity <sup>5</sup>     |                                                                                                  | 1.7                                                                                                                                                                                  | 1.0-3.0                                                                                                                                                                                                                              |
| Bud End<br>Stem End<br>Average | 12<br>12<br>12                                                                                   | 3.6<br>3.0<br>3.3                                                                                                                                                                    | 2.1-4.8<br>1.8-4.2                                                                                                                                                                                                                   |
|                                | 12                                                                                               | 6.6                                                                                                                                                                                  | 1.2-10.2                                                                                                                                                                                                                             |
|                                | 12                                                                                               | 86                                                                                                                                                                                   | 70-118                                                                                                                                                                                                                               |
| Enzymatic Browning 9           |                                                                                                  | 1.4                                                                                                                                                                                  | 1.0-2.4                                                                                                                                                                                                                              |
| Specific Gravity               |                                                                                                  | 1.087                                                                                                                                                                                | 1.080-1.096                                                                                                                                                                                                                          |
| Harvest<br>Storage             | 12<br>12                                                                                         | 1.4<br>1.8                                                                                                                                                                           | 1.0-3.0<br>1.0-4.0                                                                                                                                                                                                                   |
| Harvest<br>Storage             | 12<br>12                                                                                         | 2.8<br>2.7                                                                                                                                                                           | 2.0-4.0<br>1.0-3.0                                                                                                                                                                                                                   |
|                                | wt/A) wt/A) wt/A) wt/A) ects  formity  Bud End Stem End Average  wning  Harvest Storage  Harvest | vt/A) 11  wt/A) 11  Cwt/A) 11  cwt/A) 11  vt/A) 11  vt/A) 11  fects 1  11  formity 11  11  11  Bud End 12  Stem End 12  Average 12  12  vning 12  Harvest 12  Harvest 12  Harvest 12 | vt/A) 11 405  vt/A) 11 226  11 56  Cwt/A) 11 10  vt/A) 11 175  ects 11 0.9  t 2 11 0.0  11 96  formity 11 3.4  11 1.7  Bud End 12 3.6  Stem End 12 3.6  Stem End 12 3.0  Average 12 3.3  12 6.6  12 86  vning 12 1.4  Harvest 12 2.8 |

Table 16R. Detailed data summary for Sangre-S10,

| Varia                      | ıble                           | # Trials       | Mean              | Range              |
|----------------------------|--------------------------------|----------------|-------------------|--------------------|
| Total Yield (Cwt/A)        |                                | 27             | 535               | 410-636            |
| Yield US #1 (              | Cwt/A)                         | 27             | 471               | 358-566            |
| % US #1                    |                                | 27             | 88                | 82-93              |
| Yield >10 oz (             | Cwt/A)                         | 27             | 184               | 101-319            |
| Yield <4 oz (C             | Cwt/A)                         | 27             | 54                | 34-90              |
| % External De              | efects                         | 27             | 1.9               | 0.3-5.7            |
| % Hollow Hea               | ırt <sup>2</sup>               | 27             | 1.6               | 0.0-8.2            |
| % Stand                    |                                | 24             | 97                | 91-100             |
| Emergence Un               | iformity                       | 24             | 3.1               | 2.5-3.5            |
| Vine Vigor <sup>3</sup>    |                                | 24             | 2.8               | 1.8-3.5            |
| Stems/Plant                |                                | 24             | 3.0               | 1.9-4.3            |
| Vine Size <sup>4</sup>     |                                | 24             | 4.0               | 3.5-4.5            |
| Vine Maturity <sup>5</sup> |                                | 24             | 3.3               | 3.0-4.0            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 39<br>39<br>39 | 3.8<br>4.1<br>3.9 | 2.0-5.0<br>2.5-5.0 |
| Weight Loss <sup>7</sup>   |                                | 39             | 2.8               | 1.0-4.5            |
| Dormancy <sup>8</sup>      |                                | 39             | 87                | 56-126             |
| Enzymatic Browning         |                                | 39             | 3.3               | 2.4-4.8            |
| Specific Gravit            | ty                             | 39             | 1.076             | 1.060-1.089        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage             | 39<br>39       | 3.6<br>3.9        | 2.0-4.0<br>3.0-4.0 |
| Fry Texture 11             | Harvest<br>Storage             | 39<br>39       | 2.2<br>2.3        | 1.0-4.0<br>1.0-3.0 |
|                            |                                |                |                   |                    |

Table 16S. Detailed data summary for CO97226-2R/R.

| ;                              | # Trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean       | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /A)                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 364        | 336-406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| t/A)                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 126        | 83-224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34         | 24-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| vt/A)                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          | 0.0-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /A)                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 238        | 179-278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ets                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2        | 0.0-0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0        | 0.0-0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98         | 96-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| rmity                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1        | 3.0-3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1        | 3.0-3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2        | 3.0-5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1        | 3.0-3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3        | 1.3-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bud End<br>Stem End<br>Average | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9        | 1.9-10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68         | 48-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dormancy 9 Enzymatic Browning  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.080      | 1.076-1.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Harvest<br>Storage             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Harvest<br>Storage             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9<br>2.6 | 2.0-4.0<br>2.0-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                | t/A)  t/A)  t/A)  t/A)  t/A)  trial  trial | 7          | 7 364  1t/A) 7 126  7 34  1t/A) 7 1  7 34  1t/A) 7 238  1ts 7 0.2  7 0.0  7 98  1tr 7 3.1  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 3.1  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 4.2  7 5.3  Bud End |

Table 16T. Detailed data summary for CO97232-1R/Y.

| Variat                     | ole            | # Trials | Mean  | Range       |
|----------------------------|----------------|----------|-------|-------------|
| Total Yield (Cv            | vt/A)          | 7        | 420   | 352-481     |
| Yield US #1 (C             | wt/A)          | 7        | 282   | 220-366     |
| % US #1                    |                | 7        | 67    | 53-75       |
| Yield >10 oz (0            | Cwt/A)         | 7        | 18    | 8-33        |
| Yield <4 oz (Cv            | wt/A)          | 7        | 135   | 105-189     |
| % External Def             | ects           | 7        | 0.8   | 0.1-1.3     |
| % Hollow Hear              | t <sup>2</sup> | 7        | 0.0   | 0.0-0.0     |
| % Stand                    |                | 7        | 95    | 90-99       |
| Emergence Uni              | formity        | 7        | 3.0   | 2.5-3.5     |
| Vine Vigor <sup>3</sup>    |                | 7        | 3.3   | 3.0-4.0     |
| Stems/Plant                |                | 7        | 3.9   | 2.9-4.7     |
| Vine Size <sup>4</sup>     |                | 7        | 3.0   | 2.3-3.3     |
| Vine Maturity <sup>5</sup> |                | 7        | 2.0   | 1.3-2.8     |
| Blackspot <sup>6</sup>     | Bud End        | 8        | 4.4   | 2.9-5.0     |
|                            | Stem End       | 8        | 3.4   | 2.6-4.2     |
|                            | Average        | 8        | 3.9   |             |
| Weight Loss <sup>7</sup>   |                | 8        | 5.0   | 1.6-8.1     |
| Dormancy <sup>8</sup>      |                | 8        | 60    | 49-80       |
| Enzymatic Browning 9       |                | 8        | 3.8   | 3.4-4.4     |
| Specific Gravity           |                | 8        | 1.081 | 1.077-1.084 |
| Fry Color 10               | Harvest        | 7        | 0.9   | 0.0-1.0     |
|                            | Storage        | 8        | 1.5   | 1.0-2.0     |
| Fry Texture 11             | Harvest        | 8        | 3.0   | 2.0-4.0     |
| J =                        | Storage        | 8        | 2.8   | 2.0-3.0     |

Table 16U. Detailed data summary for CO97232-2R/Y.

| Variable                    |                    | # Trials | Mean       | Range              |
|-----------------------------|--------------------|----------|------------|--------------------|
| Total Yield (Cwt/A)         |                    | 7        | 440        | 416-471            |
| Yield US #1 (Cwt/           | A)                 | 7        | 371        | 318-420            |
| % US #1                     |                    | 7        | 84         | 76-91              |
| Yield >10 oz (Cwt/          | (A)                | 7        | 89         | 43-148             |
| Yield <4 oz (Cwt/A          | ١)                 | 7        | 66         | 36-100             |
| % External Defects          | 1                  | 7        | 0.8        | 0.3-1.7            |
| % Hollow Heart <sup>2</sup> |                    | 7        | 1.0        | 0.0-2.7            |
| % Stand                     |                    | 7        | 93         | 85-99              |
| Emergence Uniforr           | nity               | 7        | 3.1        | 2.8-3.5            |
| Vine Vigor <sup>3</sup>     |                    | 7        | 3.3        | 3.0- 4.0           |
| Stems/Plant                 |                    | 7        | 3.3        | 2.6-4.0            |
| Vine Size <sup>4</sup>      |                    | 7        | 2.6        | 2.0-3.0            |
| Vine Maturity <sup>5</sup>  |                    | 7        | 2.6        | 2.0-3.0            |
| Blackspot <sup>6</sup> B    | ud End<br>em End   | 8        | 4.7<br>4.4 | 4.1-5.0<br>3.5-5.0 |
|                             | verage             | 8        | 4.5        |                    |
| Weight Loss <sup>7</sup>    |                    | 8        | 4.2        | 1.5-8.8            |
| Dormancy <sup>8</sup>       |                    | 8        | 69         | 49-94              |
| Enzymatic Browning 9        |                    | 8        | 4.4        | 4.0-5.0            |
| Specific Gravity            |                    | 8        | 1.071      | 1.069-1.075        |
|                             | Harvest<br>Storage | 8        | 1.1<br>1.8 | 0.0-2.0<br>1.0-2.0 |
|                             | Harvest<br>Storage | 8        | 2.1<br>2.4 | 1.0-3.0<br>2.0-3.0 |

Table 16V. Detailed data summary for CO97233-3R/Y.

| Variabl                    | e                    | # Trials | Mean       | Range              |
|----------------------------|----------------------|----------|------------|--------------------|
| Total Yield (Cwt/A)        |                      | 7        | 477        | 409-524            |
| Yield US #1 (Cv            | vt/A)                | 7        | 351        | 294-425            |
| % US #1                    |                      | 7        | 73         | 61-82              |
| Yield >10 oz (C            | wt/A)                | 7        | 83         | 42-133             |
| Yield <4 oz (Cw            | t/A)                 | 7        | 108        | 67-162             |
| % External Defe            | cts                  | 7        | 4.0        | 2.5-6.1            |
| % Hollow Heart             | 2                    | 7        | 2.3        | 0.3-5.2            |
| % Stand                    |                      | 7        | 90         | 80-95              |
| Emergence Unifo            | Emergence Uniformity |          | 3.1        | 3.0-3.5            |
| Vine Vigor <sup>3</sup>    |                      | 7        | 3.6        | 3.3- 4.0           |
| Stems/Plant                |                      | 7        | 3.8        | 2.6-4.6            |
| Vine Size <sup>4</sup>     |                      | 7        | 3.0        | 2.8-3.3            |
| Vine Maturity <sup>5</sup> |                      | 7        | 3.3        | 2.8-4.0            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End  | 8        | 4.7        | 4.2-5.0<br>3.2-5.0 |
| 7                          | Average              | 8        | 4.4        |                    |
| Weight Loss'               |                      | 8        | 3.1        | 1.6-6.0            |
| Dormancy                   |                      | 8        | 74         | 61-94              |
| Enzymatic Browning 9       |                      | 8        | 4.1        | 3.6-4.6            |
| Specific Gravity           |                      | 8        | 1.082      | 1.077-1.090        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage   | 8        | 1.3<br>2.0 | 0.0-2.0<br>1.0-3.0 |
| Fry Texture 11             | Harvest<br>Storage   | 8        | 2.8<br>2.6 | 2.0-3.0<br>2.0-3.0 |

Table 16W. Detailed data summary for CO97222-1R/R.

| Variable                    |                    | # Trials         | Mean        | Range              |
|-----------------------------|--------------------|------------------|-------------|--------------------|
| Total Yield (Cwt/A          | .)                 | 7                | 396         | 349-447            |
| Yield US #1 (Cwt/           | <b>A</b> )         | 7                | 231         | 151-309            |
| % US #1                     |                    | 7                | 58          | 42-76              |
| Yield >10 oz (Cwt/          | (A)                | 7                | 27          | 7-56               |
| Yield <4 oz (Cwt/A          | <b>(</b> )         | 7                | 159         | 91 -223            |
| % External Defects          | 1                  | 7                | 1.5         | 0.0-3.0            |
| % Hollow Heart <sup>2</sup> |                    | 7                | 0.0         | 0.0-0.0            |
| % Stand                     |                    | 7                | 96          | 94-99              |
| Emergence Uniforn           | nity               | 7                | 2.9         | 2.0-3.5            |
| Vine Vigor <sup>3</sup>     |                    | 7                | 2.8         | 2.3-3.3            |
| Stems/Plant                 |                    | 7                | 3.7         | 2.3-5.1            |
| Vine Size <sup>4</sup>      |                    | 7                | 3.0         | 2.8-3.0            |
| Vine Maturity <sup>5</sup>  |                    | 7                | 2.5         | 2.0-3.0            |
| Blackspot <sup>6</sup> E    | Bud End<br>em End  | -                |             | 22.0               |
|                             | Average            |                  | <del></del> | (555-3510)         |
| Weight Loss <sup>7</sup>    |                    | 8                | 3.3         | 1.4-4.3            |
| Dormancy <sup>8</sup>       |                    | 8                | 81          | 56-132             |
| Enzymatic Browning 9        |                    | : <del>***</del> | 6243        | Same Same          |
| Specific Gravity            |                    | 8                | 1.076       | 1.073-1.080        |
| Fry Color <sup>10</sup>     | Harvest<br>Storage |                  | 22          | *** ****           |
| Fry Texture 11              | Harvest<br>Storage | 7<br>7           | 2.1<br>2.0  | 1.0-3.0<br>1.0-3.0 |

Table 16X. Detailed data summary for CO97227-2P/PW.

| Varial                     | ole                | # Trials      | Mean            | Range              |
|----------------------------|--------------------|---------------|-----------------|--------------------|
| Total Yield (Cwt/A)        |                    | 7             | 493             | 385-561            |
| Yield US #1 (C             | wt/A)              | 7             | 127             | 79-200             |
| % US #1                    |                    | 7             | 26              | 20-36              |
| Yield >10 oz (C            | Cwt/A)             | 7             | 0               | 0-2.0              |
| Yield <4 oz (Cv            | wt/A)              | 7             | 360             | 288-444            |
| % External Def             | ects               | 7             | 1.1             | 0.2-2.4            |
| % Hollow Hear              | t <sup>2</sup>     | 7             | 0.0             | 0.0-0.0            |
| % Stand                    |                    | 7             | 95              | 78-100             |
| Emergence Uni              | formity            | 7             | 3.4             | 2.8-4.0            |
| Vine Vigor <sup>3</sup>    |                    | 7             | 3.6             | 3.0-4.0            |
| Stems/Plant                |                    | 7             | 5.3             | 4.0-8.0            |
| Vine Size <sup>4</sup>     |                    | 7             | 3.9             | 3.8-4.3            |
| Vine Maturity <sup>5</sup> |                    | 7             | 2.8             | 2.0-3.0            |
| Blackspot <sup>6</sup>     | Bud End            | ***           |                 | ***                |
|                            | Stem End           | . <del></del> |                 | ****               |
| 7                          | Average            | (144)         | ***             |                    |
| Weight Loss                |                    | 9             | 4.9             | 2.0-8.4            |
| Dormancy <sup>8</sup>      |                    | 9             | 91              | 61-153             |
| Enzymatic Browning 9       |                    |               | 2,000           |                    |
| Specific Gravity           |                    | 9             | 1.088           | 1.082-1.095        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage |               | (****)<br>2**** |                    |
| Fry Texture 11             | Harvest<br>Storage | 7             | 4.0             | 3.0-5.0<br>3.0-5.0 |
|                            | Storage            | 7             | 3.9             | 3.0-5.0            |

Table 16Y. Detailed data summary for AC99329-7PW/Y.

| Variabl                    | e                              | # Trials    | Mean              | Range              |
|----------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (Cwt/A)        |                                | 6           | 534               | 463-585            |
| Yield US #1 (Cv            | rt/A)                          | 6           | 415               | 349-471            |
| % US #1                    |                                | 6           | 78                | 71-84              |
| Yield >10 oz (Cv           | vt/A)                          | 6           | 92                | 43-141             |
| Yield <4 oz (Cw            | t/A)                           | 6           | 111               | 82-149             |
| % External Defe            | cts                            | 6           | 1.5               | 0.5-3.7            |
| % Hollow Heart             | 2                              | 6           | 0.3               | 0.0-1.6            |
| % Stand                    |                                | 6           | 99                | 98-100             |
| Emergence Unifo            | ormity                         | 6           | 3.7               | 3.0-4.0            |
| Vine Vigor <sup>3</sup>    |                                | 6           | 4.1               | 3.0-5.0            |
| Stems/Plant                |                                | 6           | 5.1               | 3.0-7.4            |
| Vine Size <sup>4</sup>     |                                | 6           | 4.3               | 4.0-4.8            |
| Vine Maturity <sup>5</sup> |                                | 6           | 3.1               | 2.8-3.5            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 7<br>7<br>7 | 4.3<br>3.2<br>3.7 | 3.1-4.9<br>2.6-4.5 |
| Weight Loss <sup>7</sup>   |                                | 7           | 4.4               | 2.0-5.9            |
| Dormancy <sup>8</sup>      |                                | 7           | 38                | 23-52              |
| Enzymatic Browning 9       |                                | 7           | 4.0               | 3.0-4.6            |
| Specific Gravity           |                                | 7           | 1.091             | 1.081-1.094        |
| Fry Color 10               | Harvest<br>Storage             | 7<br>7      | 2.4<br>2.7        | 1.0-4.0<br>2.0-3.0 |
| Fry Texture 11             | Harvest<br>Storage             | 7           | 2.9               | 2.0-3.0<br>3.0-4.0 |

Table 16Z. Detailed data summary for AC99330-1P/Y.

| Varia                      | ble                            | # Trials | Mean              | Range              |
|----------------------------|--------------------------------|----------|-------------------|--------------------|
| Total Yield (Cwt/A)        |                                | 6        | 504               | 480-531            |
| Yield US #1 (0             | Cwt/A)                         | 6        | 288               | 208-376            |
| % US #1                    |                                | 6        | 57                | 43-74              |
| Yield >10 oz (             | Cwt/A)                         | 6        | 23                | 3-69               |
| Yield <4 oz (C             | wt/A)                          | 6        | 216               | 129-271            |
| % External De              | fects <sup>1</sup>             | 6        | 0.0               | 0.0-0.2            |
| % Hollow Hea               | rt <sup>2</sup>                | 6        | 0.2               | 0.0-0.6            |
| % Stand                    |                                | 6        | 98                | 96-99              |
| Emergence Un               | iformity                       | 6        | 3.1               | 2.8-3.8            |
| Vine Vigor <sup>3</sup>    |                                | 6        | 3.8               | 3.0-4.5            |
| Stems/Plant                |                                | 6        | 4.9               | 3.0-6.7            |
| Vine Size <sup>4</sup>     |                                | 6        | 3.5               | 2.8-4.0            |
| Vine Maturity <sup>5</sup> |                                | 6        | 2.8               | 2.0-3.0            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 7        | 4.7<br>4.3<br>4.5 | 4.0-5.0<br>3.7-4.8 |
| Weight Loss <sup>7</sup>   |                                | 7        | 3.4               | 1.4-5.0            |
| Dormancy <sup>8</sup>      |                                | 7        | 60                | 49-66              |
| Enzymatic Browning 9       |                                | 7        | 3.0               | 2.2-3.6            |
| Specific Gravity           |                                | 7        | 1.082             | 1.075-1.090        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage             | 7<br>7   | 1.9<br>3.1        | 1.0-4.0<br>3.0-4.0 |
| Fry Texture 11             | Harvest<br>Storage             | 7<br>7   | 2.9<br>3.1        | 2.0-4.0<br>3.0-4.0 |
|                            |                                |          |                   |                    |

Table 16AA. Detailed data summary for CO99045-1W/Y.

| Varia                      | ble                            | # Trials    | Mean              | Range              |
|----------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (Cwt/A)        |                                | 6           | 562               | 503-634            |
| Yield US #1 (C             | Cwt/A)                         | 6           | 446               | 397-519            |
| % US #1                    |                                | 6           | 79                | 73-87              |
| Yield >10 oz (0            | Cwt/A)                         | 6           | 137               | 97-240             |
| Yield <4 oz (C             | wt/A)                          | 6           | 101               | 61-160             |
| % External Det             | fects                          | 6           | 2.8               | 0.8-5.2            |
| % Hollow Hear              | rt <sup>2</sup>                | 6           | 0.0               | 0.0-0.2            |
| % Stand                    |                                | 6           | 100               | 98-101             |
| Emergence Uni              | formity                        | 6           | 3.4               | 3.0-3.8            |
| Vine Vigor <sup>3</sup>    |                                | 6           | 3.6               | 3.0-4.3            |
| Stems/Plant                |                                | 6           | 4.1               | 3.1-6.0            |
| Vine Size <sup>4</sup>     |                                | 6           | 4.0               | 3.5-4.5            |
| Vine Maturity <sup>5</sup> |                                | 6           | 3.1               | 3.0-3.5            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 7<br>7<br>7 | 4.6<br>4.5<br>4.5 | 3.8-5.0<br>3.8-5.0 |
| Weight Loss 7              |                                | 7           | 2.7               | 1.4-3.9            |
| Dormancy <sup>8</sup>      |                                | 7           | 70                | 55-87              |
| Enzymatic Browning         |                                | 7           | 4.5               | 3.8-5.0            |
| Specific Gravity           |                                | 7           | 1.089             | 1.080-1.093        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage             | 7<br>7      | 2.7<br>3.1        | 2.0-3.0<br>2.0-4.0 |
| Fry Texture 11             | Harvest<br>Storage             | 7<br>7      | 2.9<br>2.9        | 2.0-3.0<br>2.0-3.0 |

Table 16AB. Detailed data summary for ATC00293-1W/Y.

| Varia                      | ble                 | # Trials | Mean       | Range              |
|----------------------------|---------------------|----------|------------|--------------------|
| Total Yield (Cwt/A)        |                     | 5        | 576        | 505-621            |
| Yield US #1 (0             | Cwt/A)              | 5        | 491        | 449-520            |
| % US #1                    |                     | 5        | 85         | 80-91              |
| Yield >10 oz (             | Cwt/A)              | 5        | 155        | 80-256             |
| Yield <4 oz (C             | Cwt/A)              | 5        | 62         | 40-78              |
| % External De              | fects               | 5        | 4.0        | 1.7-6.8            |
| % Hollow Hea               | rt <sup>2</sup>     | 5        | 3.3        | 1.2-3.9            |
| % Stand                    |                     | 5        | 98         | 95-100             |
| Emergence Un               | iformity            | 5        | 3.0        | 2.5-3.3            |
| Vine Vigor <sup>3</sup>    |                     | 5        | 3.4        | 3.0-4.0            |
| Stems/Plant                |                     | 5        | 3.3        | 2.8-3.7            |
| Vine Size <sup>4</sup>     |                     | 5        | 4.2        | 4.0-4.8            |
| Vine Maturity <sup>5</sup> | 5                   | 5        | 3.0        | 3.0-3.0            |
| Blackspot <sup>6</sup>     | Bud End             | 6        | 4.2        | 2.6-5.0            |
|                            | Stem End<br>Average | 6<br>6   | 4.1<br>4.2 | 2.8-5.0            |
| Weight Loss <sup>7</sup>   | <del>_</del>        | 6        | 2.1        | 1.6-2.8            |
| Dormancy <sup>8</sup>      |                     | 6        | 115        | 98 -129            |
| Enzymatic Browning 9       |                     | 6        | 4.5        | 4.4-4.8            |
| Specific Gravity           |                     | 6        | 1.082      | 1.075-1.085        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage  | 6<br>6   | 1.0<br>1.8 | 0.0-2.0<br>1.0-3.0 |
| Fry Texture 11             | Harvest<br>Storage  | 6<br>6   | 2.3<br>2.3 | 1.0-3.0<br>2.0-3.0 |
|                            |                     |          |            |                    |

Table 16AC. Detailed data summary for CO00405-1RF.

| Varial                     | ole                 | # Trials | Mean       | Range              |
|----------------------------|---------------------|----------|------------|--------------------|
| Total Yield (Cwt/A)        |                     | 5        | 352        | 290-373            |
| Length: <2"                |                     | 2        | 43         | 27-58              |
| Length: 2-4"               |                     | 2        | 244        | 228-260            |
| Length: >4"-6"             |                     | 2        | 70         | 40-101             |
| Length: >6"                |                     | 2        | 3          | 0-6                |
| % External Def             | ects                | 5        | 2.2        | 0.0-4.7            |
| % Hollow Hear              | t <sup>2</sup>      | 5        | 0.0        | 0.0-0.0            |
| % Stand                    |                     | 5        | 99         | 98-100             |
| Emergence Uni              | formity             | 5        | 3.2        | 2.8-3.5            |
| Vine Vigor <sup>3</sup>    |                     | 5        | 2.9        | 2.0-3.8            |
| Stems/Plant                |                     | 5        | 4.1        | 3.6-5.5            |
| Vine Size <sup>4</sup>     |                     | 5        | 2.2        | 1.8-2.8            |
| Vinc Maturity <sup>5</sup> |                     | 5        | 1.4        | 1.0-2.0            |
| Blackspot <sup>6</sup>     | Bud End             | 6        | 4.8        | 3.9-5.0            |
|                            | Stem End<br>Average | 6<br>6   | 4.7<br>4.7 | 3.9-5.0            |
| Weight Loss <sup>7</sup>   | Average             | 6        | 3.8        | 3.1-4.8            |
| Dormancy 8                 |                     | 6        | 73         | 61-87              |
| Enzymatic Browning         |                     | 6        | 4.2        | 3.6-5.0            |
| Specific Gravity           |                     | 6        | 1.081      | 1.077-1.086        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage  | 6        | 1.3<br>1.8 | 1.0-2.0<br>2.0-2.0 |
| Fry Texture 11             | Harvest<br>Storage  | 6        | 3.0        | 2.0-5.0<br>2.0-5.0 |

Table 16AD. Detailed data summary for CO00412-5W/Y.

| Varia                    | ıble                           | # Trials    | Mean              | Range              |
|--------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (Cwt/A)      |                                | 5           | 492               | 421-579            |
| Yield US #1 (            | Cwt/A)                         | 5           | 366               | 283-448            |
| % US #1                  |                                | 5           | 74                | 61-82              |
| Yield >10 oz (           | Cwt/A)                         | 5           | 82                | 29-143             |
| Yield <4 oz (C           | Cwt/A)                         | 5           | 113               | 75-167             |
| % External De            | efects                         | 5           | 2.6               | 0.7-3.8            |
| % Hollow Hea             | art <sup>2</sup>               | 5           | 1.3               | 0.0-2.7            |
| % Stand                  |                                | 5           | 99                | 98-100             |
| Emergence Un             | iformity                       | 5           | 3.5               | 3.0-4.0            |
| Vine Vigor <sup>3</sup>  |                                | 5           | 3.8               | 3.0-4.3            |
| Stems/Plant              |                                | 5           | 4.5               | 2.8-5.7            |
| Vine Size <sup>4</sup>   |                                | 5           | 3.6               | 3.0-4.0            |
| Vine Maturity            | 5                              | 5           | 2.9               | 2.5-3.0            |
| Blackspot <sup>6</sup>   | Bud End<br>Stem End<br>Average | 6<br>6<br>6 | 4.1<br>3.7<br>3.9 | 2.0-5.0<br>1.9-4.7 |
| Weight Loss <sup>7</sup> |                                | 6           | 2.5               | 1.7-4.6            |
| Dormancy <sup>8</sup>    |                                | 6           | 75                | 63-87              |
| Enzymatic Bro            | wning <sup>9</sup>             | 6           | 3.7               | 3.2-4.0            |
| Specific Gravit          | У                              | 6           | 1.089             | 1.077-1.094        |
| Fry Color <sup>10</sup>  | Harvest<br>Storage             | 6<br>6      | 1.7<br>2.5        | 1.0-3.0<br>2.0-4.0 |
| Fry Texture 11           | Harvest<br>Storage             | 6           | 2.7               | 2.0-3.0<br>2.0-4.0 |
|                          |                                |             |                   |                    |

Table 16AE. Detailed data summary for CO00415-1RF.

| Varia                      | ble                            | # Trials    | Mean              | Range              |
|----------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (C             | wt/A)                          | 5           | 372               | 278-431            |
| Length: <2"                |                                | 2           | 36                | 26-46              |
| Length: 2-4"               |                                | 2           | 246               | 207-285            |
| Length: >4"-6"             | 1                              | 2           | 56                | 19-93              |
| Length: >6"                |                                | 2           | 3                 | 0-6                |
| % External De              | fects <sup>1</sup>             | 5           | 3.7               | 1.1-7.8            |
| % Hollow Hea               | rt <sup>2</sup>                | 5           | 0.0               | 0.0-0.0            |
| % Stand                    |                                | 5           | 89                | 54-100             |
| Emergence Un               | iformity                       | 5           | 3.1               | 2.0-3.5            |
| Vine Vigor <sup>3</sup>    |                                | 5           | 2.9               | 2.5-3.3            |
| Stems/Plant                |                                | 5           | 4.6               | 3.2-7.2            |
| Vine Size <sup>4</sup>     |                                | 5           | 2.5               | 2.0-3.3            |
| Vine Maturity <sup>5</sup> |                                | 5           | 1.4               | 1.0-1.8            |
| Blackspot 6                | Bud End<br>Stem End<br>Average | 6<br>6<br>6 | 4.9<br>4.6<br>4.8 | 4.5-5.0<br>3.1-5.0 |
| Weight Loss <sup>7</sup>   |                                | 6           | 2.9               | 2.2-4.1            |
| Dormancy <sup>8</sup>      |                                | 6           | 90                | 70-105             |
| Enzymatic Bro              | wning 9                        | 6           | 4.5               | 4.0-4.8            |
| Specific Gravit            | у                              | 6           | 1.076             | 1.071-1.080        |
| Fry Color 10               | Harvest<br>Storage             | 6<br>6      | 1.8<br>3.0        | 1.0-2.0<br>3.0-3.0 |
| Fry Texture 11             | Harvest<br>Storage             | 6           | 2.3<br>2.3        | 1.0-4.0<br>1.0-3.0 |
|                            |                                |             |                   |                    |

Table 16AF. Detailed data summary for CO01399-10P/Y.

| Varia                      | ble                            | # Trials    | Mean              | . Range            |
|----------------------------|--------------------------------|-------------|-------------------|--------------------|
| Total Yield (C             | wt/A)                          | 4           | 566               | 478-648            |
| Yield US #1 (0             | Cwt/A)                         | 4           | 428               | 368-511            |
| % US #1                    |                                | 4           | 76                | 66-80              |
| Yield >10 oz (             | Cwt/A)                         | 4           | 75                | 27-117             |
| Yield <4 oz (C             | (wt/A)                         | 4           | 131               | 103-192            |
| % External De              | fects                          | 4           | 1.1               | 0.7-1.7            |
| % Hollow Hea               | rt <sup>2</sup>                | 4           | 0.0               | 0.0-0.2            |
| % Stand                    |                                | 4           | 99                | 96-100             |
| Emergence Un               | iformity                       | 4           | 3.0               | 3.0-3.0            |
| Vine Vigor <sup>3</sup>    |                                | 4           | 3.1               | 2.5-3.5            |
| Stems/Plant                |                                | 4           | 3.6               | 2.4-4.2            |
| Vine Size <sup>4</sup>     |                                | 4           | 4.3               | 4.0-4.8            |
| Vine Maturity <sup>5</sup> |                                | 4           | 3.3               | 3.0-4.0            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 5<br>5<br>5 | 4.5<br>4.4<br>4.5 | 4.2-5.0<br>4.0-5.0 |
| Weight Loss 7              |                                | 5           | 2.4               | 1.4-3.0            |
| Dormancy <sup>8</sup>      |                                | 5           | 88                | 70-111             |
| Enzymatic Bro              | wning <sup>9</sup>             | 5           | 3.6               | 3.2-4.4            |
| Specific Gravit            | у                              | 5           | 1.080             | 1.077-1.085        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage             | 5<br>5      | 0.8<br>1.0        | 0.0-2.0<br>0.0-2.0 |
| Fry Texture 11             | Harvest<br>Storage             | 5<br>5      | 3.0<br>3.4        | 2.0-4.0<br>3.0-4.0 |
|                            |                                |             |                   |                    |

Table 16AG. Detailed data summary for Mountain Rose.

| Variable                   | e                   | # Trials | Mean                 | Range              |
|----------------------------|---------------------|----------|----------------------|--------------------|
| Total Yield (Cwi           | t/A)                | 8        | 383                  | 288-449            |
| Yield US #1 (Cw            | rt/A)               | 8        | 262                  | 150-354            |
| % US #1                    |                     | 8        | 68                   | 52-79              |
| Yield >10 oz (Cv           | vt/A)               | 8        | 23                   | 4-63               |
| Yield <4 oz (Cw            | t/A)                | 8        | 116                  | 91-148             |
| % External Defe            | cts <sup>1</sup>    | 8        | 1.1                  | 0.0-2.4            |
| % Hollow Heart             | 2                   | 8        | 0.0                  | 0.0-0.0            |
| % Stand                    |                     | 8        | 98                   | 94-100             |
| Emergence Unifo            | ormity              | 8        | 3.6                  | 3.0-4.3            |
| Vine Vigor <sup>3</sup>    |                     | 8        | 2.7                  | 2.0-3.0            |
| Stems/Plant                |                     | 8        | 3.7                  | 2.9-4.9            |
| Vine Size <sup>4</sup>     |                     | 8        | 2.7                  | 2.3-3.0            |
| Vine Maturity <sup>5</sup> |                     | 8        | 2.2                  | 1.5-3.0            |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End | 20002    | 127772               |                    |
|                            | Average             |          | 65 <del>7416</del> 4 |                    |
| Weight Loss <sup>7</sup>   |                     | 11       | 4.1                  | 1.3-6.3            |
| Dormancy <sup>8</sup>      |                     | 11       | 102                  | 77-153             |
| Enzymatic Browi            | ning <sup>9</sup>   |          |                      |                    |
| Specific Gravity           |                     | 11       | 1.081                | 1.074-1.086        |
| Fry Color <sup>10</sup>    | Harvest<br>Storage  |          | ****                 | *** ***            |
| Fry Texture 11             | Harvest             | 6        | 2.5<br>2.7           | 1.0-3.0<br>2.0-3.0 |

Table 16AH. Detailed data summary for Purple Majesty.

| Varia                      | ble                 | # Trials     | Mean       | Range                   |
|----------------------------|---------------------|--------------|------------|-------------------------|
| Total Yield (C             | wt/A)               | 15           | 502        | 404-606                 |
| Yield US #1 (C             | Cwt/A)              | 15           | 289        | 203-401                 |
| % US #1                    |                     | 15           | 57         | 40-72                   |
| Yield >10 oz (             | Cwt/A)              | 15           | 30         | 14-61                   |
| Yield <4 oz (C             | wt/A)               | 15           | 210        | 122-326                 |
| % External De              | fects               | 15           | 0.6        | 0.0-1.7                 |
| % Hollow Hear              | rt <sup>2</sup>     | 15           | 1.2        | 0.2-3.4                 |
| % Stand                    |                     | 15           | 98         | 94-100                  |
| Emergence Uni              | iformity            | 15           | 3.6        | 3.0-4.0                 |
| Vine Vigor <sup>3</sup>    |                     | 15           | 3.6        | 2.8-4.5                 |
| Stems/Plant                |                     | 15           | 4.2        | 3.2-6.1                 |
| Vine Size <sup>4</sup>     |                     | 15           | 3.0        | 2.3-3.5                 |
| Vine Maturity <sup>5</sup> |                     | 15           | 2.2        | 1.5-3.0                 |
| Blackspot 6                | Bud End             | (Australia ) | mme        | AND THE PERSON NAMED IN |
|                            | Stem End<br>Average |              |            | Keele office.           |
| Weight Loss <sup>7</sup>   |                     | 21           | 3.9        | 1.1-6.8                 |
| Dormancy <sup>8</sup>      |                     | 21           | 62         | 42-85                   |
| Enzymatic Brov             | wning <sup>9</sup>  |              |            | ****                    |
| Specific Gravity           | у                   | 21           | 1.086      | 1.076-1.094             |
| Fry Color <sup>10</sup>    | Harvest<br>Storage  | DIA.         |            |                         |
| Fry Texture 11             | Harvest<br>Storage  | 16<br>16     | 2.6<br>2.7 | 1.0-4.0<br>2.0-3.0      |

Table 16AI. Detailed data summary for Yukon Gold.

| Variable                                  | # Trials | Mean              | Range              |
|-------------------------------------------|----------|-------------------|--------------------|
| Total Yield (Cwt/A)                       | 29       | 413               | 321-513            |
| Yield US #1 (Cwt/A)                       | 29       | 369               | 293-444            |
| % US #1                                   | 29       | 89                | 82-94              |
| Yield >10 oz (Cwt/A)                      | 29       | 165               | 89-248             |
| Yield <4 oz (Cwt/A)                       | 29       | 37                | 22-66              |
| % External Defects                        | 29       | 1.6               | 0.0-4.4            |
| % Hollow Heart <sup>2</sup>               | 29       | 0.5               | 0.0-2.2            |
| % Stand                                   | 29       | 96                | 90-100             |
| Emergence Uniformity                      | 29       | 3.3               | 2.5-3.8            |
| Vine Vigor <sup>3</sup>                   | 29       | 3.7               | 3.0-4.3            |
| Stems/Plant                               | 29       | 2.4               | 1.6-3.8            |
| Vine Size <sup>4</sup>                    | 29       | 3.0               | 2.5-3.5            |
| Vine Maturity <sup>5</sup>                | 29       | 1.9               | 1.0-3.0            |
| Blackspot <sup>6</sup> Bud E Stem E Avera | nd 36    | 4.1<br>3.9<br>4.0 | 2.0-5.0<br>2.4-5.0 |
| Weight Loss <sup>7</sup>                  | 36       | 2.3               | 1.0-4.3            |
| Dormancy <sup>8</sup>                     | 36       | 88                | 63-132             |
| Enzymatic Browning 9                      | 36       | 4.4               | 3.8-5.0            |
| Specific Gravity                          | 36       | 1.086             | 1.079-1.093        |
| Fry Color 10 Harve Stora                  |          | 1.7<br>2.7        | 1.0-3.0<br>1.0-4.0 |
| Fry Texture Harve Stora                   |          | 3.0<br>3.0        | 1.0-4.0<br>1.0-4.0 |

Table 16AJ. Detailed data summary for CO00188-4W.

| Variable                              | # Trials | Mean                     | Range                                    |
|---------------------------------------|----------|--------------------------|------------------------------------------|
| Total Yield (Cwt/A)                   | 5        | 437                      | 385-483                                  |
| Yield US #1 (Cwt/A)                   | 5        | 334                      | 270-377                                  |
| % US #1                               | 5        | 76                       | 70-86                                    |
| Yield >10 oz (Cwt/A)                  | 5        | 36                       | 12-68                                    |
| Yield <4 oz (Cwt/A)                   | 5        | 96                       | 39-133                                   |
| % External Defects                    | 5        | 1.7                      | 0.5-4.3                                  |
| % Hollow Heart <sup>2</sup>           | 5        | 0.1                      | 0.0-0.3                                  |
| % Stand                               | 5        | 99                       | 98-100                                   |
| Emergence Uniformity                  | 5        | 3.5                      | 3.3-4.0                                  |
| Vine Vigor <sup>3</sup>               | 5        | 3.8                      | 3.3-4.3                                  |
| Stems/Plant                           | 5        | 4.1                      | 2.1-4.8                                  |
| Vine Size <sup>4</sup>                | 5        | 3.0                      | 2.8-3.3                                  |
| Vine Maturity <sup>5</sup>            | 5        | 2.7                      | 2.3-3.0                                  |
| Blackspot Bud Er<br>Stem Er<br>Averag | nd 11    | 4.6<br>3.2<br>3.9        | 3.8-5.0<br>1.4-4.4                       |
| Weight Loss <sup>7</sup>              | 11       | 3.1                      | 2.1-4.6                                  |
| Dormancy <sup>8</sup>                 | 11       | 99                       | 84-123                                   |
| Enzymatic Browning 9                  | 11       | 4.4                      | 3.6-5.0                                  |
| Specific Gravity                      | 12       | 1.091                    | 1.085-1.095                              |
| 40.                                   | 0 12     | 3.4<br>2.8<br>1.6<br>1.7 | 2.0-4.5<br>1.5-4.0<br>1.0-2.5<br>1.0-2.5 |

Table 16AK. Detailed data summary for CO00197-3W.

| Variable                    |                        | # Trials             | Mean                     | Range                                    |
|-----------------------------|------------------------|----------------------|--------------------------|------------------------------------------|
| Total Yield (Cwt/A)         |                        | 5                    | 482                      | 456-511                                  |
| Yield US #1 (Cwt/A)         | )                      | 5                    | 356                      | 270-396                                  |
| % US #1                     |                        | 5                    | 74                       | 59-82                                    |
| Yield >10 oz (Cwt/A         | .)                     | 5                    | 61                       | 35-95                                    |
| Yield <4 oz (Cwt/A)         |                        | 5                    | 123                      | 85-183                                   |
| % External Defects 1        |                        | 5                    | 0.7                      | 0.1-1.6                                  |
| % Hollow Heart <sup>2</sup> |                        | 5                    | 0.8                      | 0.0-3.2                                  |
| % Stand                     |                        | 5                    | 96                       | 93-100                                   |
| Emergence Uniformi          | ty                     | 5                    | 3.5                      | 3.0-4.0                                  |
| Vine Vigor <sup>3</sup>     |                        | 5                    | 3.7                      | 3.3-4.3                                  |
| Stems/Plant                 |                        | 5                    | 3.5                      | 2.5-3.9                                  |
| Vine Size <sup>4</sup>      |                        | 5                    | 3.2                      | 2.8-3.5                                  |
| Vine Maturity <sup>5</sup>  |                        | 5                    | 2.3                      | 2.0-3.0                                  |
| Stem                        | l End<br>End<br>erage  | 11<br>11<br>11       | 3.7<br>2.5<br>3.1        | 2.4-4.6<br>1.1-3.8                       |
| Weight Loss <sup>7</sup>    |                        | 11                   | 2.6                      | 1.6-4.3                                  |
| Dormancy <sup>8</sup>       |                        | 11                   | 84                       | 69-109                                   |
| Enzymatic Browning          | 9                      | 11                   | 2.9                      | 1.4-3.8                                  |
| Specific Gravity            |                        | 12                   | 1.086                    | 1.079-1.090                              |
| Chip Color <sup>10</sup>    | 40<br>40R<br>50<br>50R | 12<br>12<br>12<br>12 | 4.0<br>3.5<br>2.3<br>2.4 | 3.0-5.0<br>1.5-4.5<br>1.0-3.5<br>1.0-4.0 |

Table 16AL. Detailed data summary for CO00270-7W.

| Varia                      | ble                            | # Trials             | Mean                     | Range                                    |
|----------------------------|--------------------------------|----------------------|--------------------------|------------------------------------------|
| Total Yield (C             | wt/A)                          | 5                    | 419                      | 378-456                                  |
| Yield US #1 (0             | Cwt/A)                         | 5                    | 355                      | 326-383                                  |
| % US #1                    |                                | 5                    | 85                       | 80-92                                    |
| Yield >10 oz (             | Cwt/A)                         | 5                    | 88                       | 68-140                                   |
| Yield <4 oz (C             | wt/A)                          | 5                    | 59                       | 24-76                                    |
| % External De              | fects                          | 5                    | 1.2                      | 0.4-1.7                                  |
| % Hollow Hea               | rt <sup>2</sup>                | 5                    | 0.0                      | 0.0-0.0                                  |
| % Stand                    |                                | 5                    | 95                       | 93-99                                    |
| Emergence Un               | iformity                       | 5                    | 3.3                      | 3.0-3.5                                  |
| Vine Vigor <sup>3</sup>    |                                | 5                    | 3.7                      | 3.0-4.0                                  |
| Stems/Plant                |                                | 5                    | 3.4                      | 2.3-4.2                                  |
| Vine Size <sup>4</sup>     |                                | 5                    | 3.0                      | 2.3-3.3                                  |
| Vine Maturity <sup>5</sup> |                                | 5                    | 2.6                      | 2.3-3.0                                  |
| Blackspot <sup>6</sup>     | Bud End<br>Stem End<br>Average | 11<br>11<br>11       | 4.3<br>3.7<br>4.0        | 3.1-4.8<br>2.6-4.4                       |
| Weight Loss 7              |                                | 11                   | 3.1                      | 2.0-5.4                                  |
| Dormancy <sup>8</sup>      |                                | 11                   | 65                       | 48-94                                    |
| Enzymatic Bro              | wning <sup>9</sup>             | 11                   | 3.5                      | 2.4-4.0                                  |
| Specific Gravit            | у                              | 12                   | 1.087                    | 1.078-1.097                              |
| Chip Color <sup>10</sup>   | 40<br>40R<br>50<br>50R         | 12<br>12<br>12<br>12 | 3.3<br>2.5<br>1.7<br>1.6 | 1.5-4.5<br>1.0-4.0<br>1.0-3.0<br>1.0-2.5 |

Table 16AM. Detailed data summary for Atlantic.

| Varia                    | able                           | # Trials             | Mean                     | Range                                    |
|--------------------------|--------------------------------|----------------------|--------------------------|------------------------------------------|
| Total Yield (C           | Cwt/A)                         | 39                   | 463                      | 307-597                                  |
| Yield US #1 (            | Cwt/A)                         | 39                   | 401                      | 265-512                                  |
| % US #1                  |                                | 39                   | 87                       | 76-93                                    |
| Yield >10 oz             | (Cwt/A)                        | 39                   | 152                      | 58-290                                   |
| Yield <4 oz (C           | Cwt/A)                         | 39                   | 49                       | 19-109                                   |
| % External De            | efects 1                       | 39                   | 2.5                      | 0.1-9.1                                  |
| % Hollow Hea             | art <sup>2</sup>               | 39                   | 5.1                      | 0.3-16.4                                 |
| % Stand                  |                                | 39                   | 96                       | 88-100                                   |
| Emergence Ur             | niformity                      | 33                   | 3.6                      | 3.0-4.3                                  |
| Vine Vigor <sup>3</sup>  |                                | 33                   | 3.5                      | 2.8-4.3                                  |
| Stems/Plant              |                                | 39                   | 3.1                      | 2.2-4.9                                  |
| Vine Size <sup>4</sup>   |                                | 33                   | 3.1                      | 2.2-4.0                                  |
| Vine Maturity            | 5                              | 39                   | 3.2                      | 2.8-4.0                                  |
| Blackspot <sup>6</sup>   | Bud End<br>Stem End<br>Average | 56<br>56<br>57       | 3.2<br>2.7<br>2.9        | 1.8-5.0<br>1.4-4.3                       |
| Weight Loss <sup>7</sup> |                                | 57                   | 4.5                      | 1.1-7.9                                  |
| Dormancy <sup>8</sup>    |                                | 54                   | 84                       | 56-119                                   |
| Enzymatic Bro            | wning 9                        | 55                   | 4.5                      | 3.8-5.0                                  |
| Specific Gravit          | ty                             | 58                   | 1.098                    | 1.083-1.120                              |
| Chip Color <sup>10</sup> | 40<br>40R<br>50<br>50R         | 58<br>58<br>58<br>58 | 4.0<br>3.5<br>2.6<br>2.6 | 2.0-5.0<br>1.5-5.0<br>1.0-4.0<br>1.0-5.5 |
|                          |                                |                      | 2.0                      | 1.0-2.3                                  |

Table 16AN. Detailed data summary for Chipeta.

| Variable                                       |                | # Trials             | Mean                     | Range                                    |
|------------------------------------------------|----------------|----------------------|--------------------------|------------------------------------------|
| Total Yield (Cwt/A)                            |                | 36                   | 542                      | 399-757                                  |
| Yield US #1 (Cwt/A                             | )              | 36                   | 460                      | 306-606                                  |
| % US #1                                        |                | 36                   | 85                       | 71-90                                    |
| Yield >10 oz (Cwt/A                            | .)             | 36                   | 169                      | 52-388                                   |
| Yield <4 oz (Cwt/A)                            |                | 36                   | 55                       | 22-119                                   |
| % External Defects 1                           |                | 36                   | 5.1                      | 1.1-13.0                                 |
| % Hollow Heart <sup>2</sup>                    |                | 36                   | 0.5                      | 0.0-4.0                                  |
| % Stand                                        |                | 36                   | 98                       | 94-100                                   |
| Emergence Uniformit                            | y              | 29                   | 3.6                      | 3.0-4.8                                  |
| Vine Vigor <sup>3</sup>                        |                | 29                   | 4.0                      | 3.0-5.0                                  |
| Stems/Plant                                    |                | 35                   | 3.5                      | 2.0-4.9                                  |
| Vine Size <sup>4</sup>                         |                | 29                   | 4.3                      | 4.0-5.0                                  |
| Vine Maturity <sup>5</sup>                     |                | 36                   | 3.3                      | 3.0-4.0                                  |
| Blackspot <sup>6</sup> Bud I<br>Stem I<br>Aver | End            | 52<br>52<br>54       | 3.8<br>3.6<br>3.7        | 2.2-5.0<br>1.4-4.9                       |
| Weight Loss <sup>7</sup>                       | <i>Q</i> .     | 54                   | 3.2                      | 1.0-8.0                                  |
| Dormancy <sup>8</sup>                          |                | 50                   | 103                      | 70-153                                   |
| Enzymatic Browning 9                           |                | 51                   | 4.0                      | 2.8-5,0                                  |
| Specific Gravity                               |                | 54                   | 1.090                    | 1.073-1.107                              |
| 40                                             | 40<br>OR<br>50 | 54<br>54<br>54<br>54 | 4.5<br>3.8<br>2.6<br>2.3 | 3.0-5.0<br>1.5-5.0<br>1.0-4.0<br>1.0-4.0 |

# Footnotes for Tables 16A-16AN:

- Percent external defects based on the proportion of the total sample weight with significant defects.
- Percent hollow heart calculated as follows: (Weight of tubers >10 ounces with defects/total sample weight) x 100.
- <sup>3</sup>Vine vigor is rated on a 1 to 5 scale, with 5 indicating very vigorous vines.
- <sup>4</sup>Vine size is rated on a 1 to 5 scale, with 5 indicating very large vines.
- <sup>5</sup>Vine maturity is rated on the following basis: 1=very early; 2=early; 3=medium; 4=late; and 5=very late.
- <sup>6</sup>Blackspot was rated on a 1 to 5 scale, with 5 indicating no discoloration.
- <sup>7</sup>Tubers were stored at 45F for approximately 3 months.
- <sup>8</sup>Days from harvest to first visible growth. Tubers were stored at 45F.
- Degree of darkening rated at 60 minutes after slicing fresh lengthwise. Rated on a 1 to 5 scale, with 5 indicating no discoloration.
- Chip color was rated using the Snack Food Association 1-5 scale. Ratings of ≤2.0 are acceptable. Reconditioned samples were stored at 60F for three weeks. Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of ≤2.0 are acceptable.
- <sup>11</sup> Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

# APPENDIX 1. Cultural management information for the Potato Breeding and Selection Program's trials at the San Luis Valley Research Center - 2010.

**LOCATION:** San Luis Valley Research Center

**SOIL TYPE:** Sandy Loam (Dunul cobbly sandy loam)

#### DATE:

Planted - 5/14/10 Hilled - 5/26/10

Vines Killed - 9/01/10 (sulfuric acid - 25 gal/A) - 110 days after planting

Harvested - 9/27-28/10

#### **PLOT INFORMATION:**

Size of Plots - 1 row x 25' Spacing Between Hills - 12" Spacing Between Rows - 34" Hills Per Plot - 25

Number of Reps - 4 except 2 for Intermediate Yield Trials)

#### **METHOD OF HARVEST:**

Machine (Grimme 1-row)

#### FERTILIZER:

5/14/10 - 80 lbs N + 60 lbs P<sub>2</sub>O<sub>5</sub> + 40 lbs K<sub>2</sub>0 + 2.5 lb Zn/A (dual band in-row liquid application)

7/02/10 - 15 lbs N (fertigated)

7/14/10 - 15 lbs N (fertigated)

7/26/10 - 10 lbs N (fertigated)

Total fertilizer applied: 120 lbs N + 60 lbs  $P_2O_5$  + 40 lbs  $K_2O$  + 2.5 lb Zn/A

### **IRRIGATION:**

Center Pivot - 17.00" gross application (application frequency and amount based on ET)

Rainfall - 1.34" (5/14/10-9/28/10)

## **INSECTICIDES APPLIED:**

7/22/10 - Fulfill (1.375 lb a.i./A)

8/08/10 - Endigo ZC (0.037 lb a.i./A thiamethoxam + 0.028 lb a.i./A lambda-cyhalothrin)

#### **FUNGICIDES APPLIED:**

7/15/10 - Quadris (0.202 lb a.i./A)

8/02/10 - Bravo Weather Stik (1.125 lb a.i./A)

### **HERBICIDES APPLIED:**

5/27/10 -Dual Magnum (1.432 lb a.i./A)

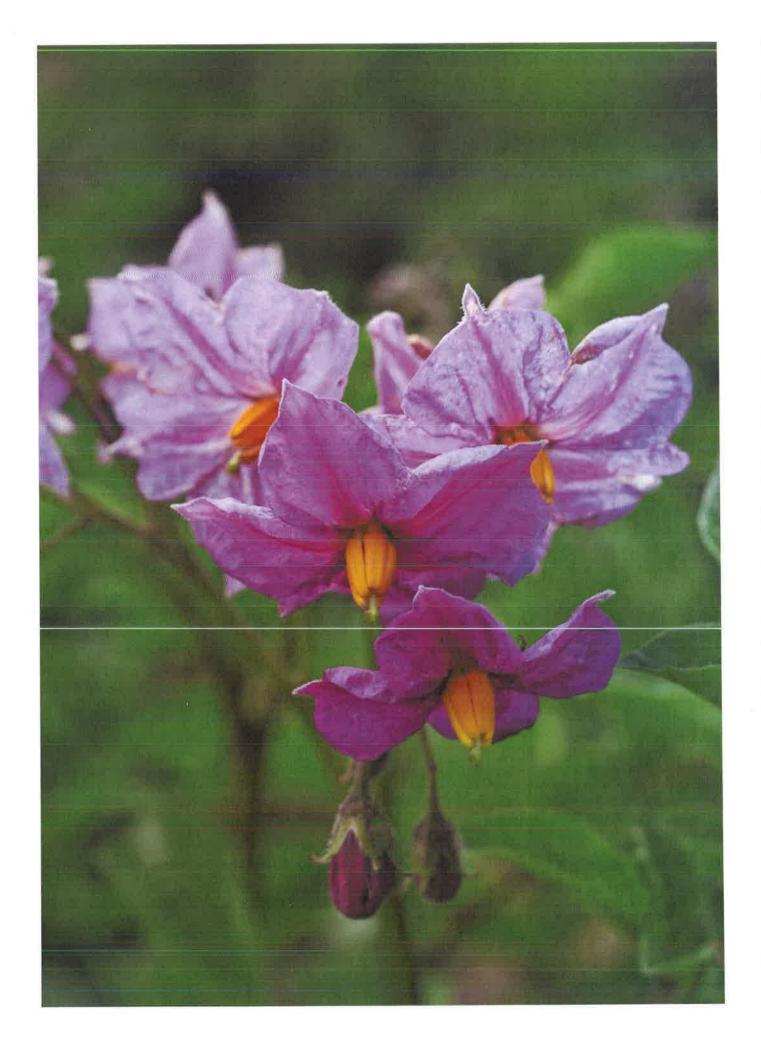
APPENDIX 2. General procedures used for postharvest evaluations.

**Blackspot.** Ten randomly selected tubers for each clone tested are bruised on the stem and bud ends with a 150 g weight dropped from a height of 60 cm. Tubers are stored at 40F prior to bruising and warmed up for 24 hours prior to brusing. After bruising, tubers are stored at room temperature for two days prior to evaluation. Blackspot susceptibility is evaluated by cutting the tubers in half longitudinally and rating the extent of damage. Blackspot is rated on a 1 to 5 scale, with 5 indicating no discoloration.

**Storage Weight Loss and Dormancy.** Ten randomly selected tubers are weighed and stored at 45F for approximately a three month period under low relative humidity conditions to evaluate storage weight loss potential. These tubers are also observed weekly for sprout growth. Dormancy is reported as days after harvest to first visible sprout growth.

**Enzymatic Browning.** Five tubers of each clone are cut in half lengthwise and rated for degree of darkening 60 minutes later. Degree of darkening is rated on a 1 to 5 scale, with 5 indicating no discoloration.

Specific Gravity. Specific gravity is determined using the air/water method.


Fry Color and Texture. Fry color and texture is determined at or shortly after harvest and after a minimum of eight weeks of storage at 45F. Fries are cooked for 3 ½ minutes at 375F. Fry color is rated on a 0-4 scale using the USDA color standards. Color ratings ≤2 are acceptable. Fry texture is rated on a 1 to 5 scale, with 5 indicating that the cooked flesh was dry and mealy, with 1 representing a soggy, wet texture.

Chip Color. Chip color is determined after an interval of storage at 40 and 50F and after reconditioning for three weeks at 60F. Chips are cooked at 365F until bubbling slows. Chip color is rated using the Snack Food Association 1-5 scale. Ratings ≤2.0 are acceptable.

# Notes





